Retinal prostheses restore limited visual perception, but low spatial resolution and temporal persistence make reading difficult. In sequential letter presentation, the afterimage of one symbol can interfere with perception of the next, leading to systematic recognition errors. Rather than relying on future hardware improvements, we investigate whether optimizing the visual symbols themselves can mitigate this temporal interference. We present SymbolSight, a computational framework that selects symbol-to-letter mappings to minimize confusion among frequently adjacent letters. Using simulated prosthetic vision (SPV) and a neural proxy observer, we estimate pairwise symbol confusability and optimize assignments using language-specific bigram statistics. Across simulations in Arabic, Bulgarian, and English, the resulting heterogeneous symbol sets reduced predicted confusion by a median factor of 22 relative to native alphabets. These results suggest that standard typography is poorly matched to serial, low-bandwidth prosthetic vision and demonstrate how computational modeling can efficiently narrow the design space of visual encodings to generate high-potential candidates for future psychophysical and clinical evaluation.