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Figure 1: Scene simplification for bionic vision. (A) Example retinal implant (Argus II): a head-mounted camera provides
visual input that is delivered as electrical stimulation through a microelectrode array in the retina (image reused under CC BY
from [5]). (B) Traditional preprocessing methods, such as edge detection (Control), emphasize basic scene features but do not
prioritize task-relevant information. (C) SemanticEdges enhances perception by isolating key semantic groups (e.g., pedestrians,
obstacles) while suppressing irrelevant background details. (D) SemanticRaster extends this approach by sequencing semantic
groups across frames, prioritizing hazards first to reduce clutter and improve scene understanding in dynamic environments.

Abstract

Visual neuroprostheses (bionic eyes) aim to restore a rudimentary
form of vision by translating camera input into patterns of electri-
cal stimulation. To improve scene understanding under extreme
resolution and bandwidth constraints, prior work has explored com-
puter vision techniques such as semantic segmentation and depth
estimation. However, presenting all task-relevant information si-
multaneously can overwhelm users in cluttered environments. We
compare two complementary approaches to semantic preprocess-
ing in immersive virtual reality: SemanticEdges, which highlights all
relevant objects at once, and SemanticRaster, which staggers object

This work is licensed under a Creative Commons Attribution 4.0 International License.
VRST ’25, Montreal, QC, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2118-2/2025/11

https://doi.org/10.1145/3756884.3766003

categories over time to reduce visual clutter. Using a biologically
grounded simulation of bionic vision, 18 sighted participants per-
formed a wayfinding task in a dynamic urban environment across
three conditions: edge-based baseline (Control), SemanticEdges, and
SemanticRaster. Both semantic strategies improved performance
and user experience relative to the baseline, with each offering
distinct trade-offs: SemanticEdges increased the odds of success,
while SemanticRaster boosted the likelihood of collision-free com-
pletions. These findings underscore the value of adaptive semantic
preprocessing for bionic vision and, more broadly, may inform the
design of low-bandwidth visual interfaces in XR that must balance
information density, task relevance, and perceptual clarity.

CCS Concepts

« Human-centered computing — Accessibility technologies;
Virtual reality; - Computing methodologies — Image pro-
cessing; Image representations; Scene understanding,.


https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3756884.3766003

VRST ’25, November 12-14, 2025, Montreal, QC, Canada

Keywords

bionic vision, virtual reality, wayfinding, scene simplification

ACM Reference Format:

Justin M. Kasowski, Apurv Varshney, and Michael Beyeler. 2025. Static or
Temporal? Semantic Scene Simplification to Aid Wayfinding in Immersive
Simulations of Bionic Vision. In 31st ACM Symposium on Virtual Reality Soft-
ware and Technology (VRST ’25), November 12—14, 2025, Montreal, QC, Canada.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3756884.3766003

1 Introduction

By 2050, over 114 million people are expected to be living with in-
curable blindness, representing a major global health challenge [6].
Electronic visual prostheses, or bionic eyes, aim to restore rudimen-
tary vision by electrically stimulating surviving neurons in the
retina, optic nerve, or visual cortex [14, 56]. While clinically ap-
proved systems such as the Argus II (Fig. 1A) can provide functional
vision for navigation and object localization [17, 33], they remain
limited by low resolution, narrow fields of view, and strict safety
regulations on simultaneous electrode activation.

Commercial devices typically activate only subsets of electrodes
(timing groups) in rapid temporal succession [49], a raster-scanning
approach inspired by display technology. Raster patterns are cho-
sen heuristically and remain agnostic to scene content. Recent
work suggests that checkerboard rasters, which maximize spatial
distance between active electrodes, can improve clarity and task
performance while complying with safety limits [28]. In parallel,
preprocessing strategies such as semantic segmentation [20, 48] or
depth-based cues [35, 43, 46] can highlight task-relevant informa-
tion. However, even simplified images often overwhelm the user
when displayed all at once under tight stimulation constraints [4].

We propose a novel content-aware raster strategy called Seman-
ticRaster, which bridges these two perspectives. Rather than acti-
vating spatial strips or checkerboards, the system cycles through
semantic groups over time: for example, first displaying hazards like
cars or bicycles, then pedestrians, then structural elements (Fig.1D).
This approach aims to reduce clutter and direct attention to task-
relevant features while maintaining context across frames. The
prioritization of object categories is flexible and ideally co-designed
with blind users [10, 37, 44], offering a foundation for temporally
adaptive encoding that reflects user needs and task demands.

Because no commercial retinal implants are currently available
(and clinical testing is constrained by risk, device heterogeneity, and
small sample sizes), direct evaluation of raster strategies in end users
is infeasible. Simulated prosthetic vision (SPV) in immersive virtual
reality (VR) provides a powerful alternative [12, 21, 27], enabling
repeatable testing of design strategies in realistic settings. Here
we use BionicVisionXR [27], an open-source VR platform with
gaze-contingent rendering and psychophysically grounded models
of phosphene appearance [2], temporal dynamics [25], and spatial
summation [24], to emulate how a future implant may respond to
head and eye movements.

In this study, 18 sighted participants completed a wayfinding
task through a cluttered virtual town square using SPV. While
sighted participants cannot model long-term perceptual learning,
they enable controlled, within-subject comparisons that are im-
practical in implant users [3]. Gaze-contingent rendering allowed
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us to emulate the visual experience of a head-mounted camera

system interacting with retinal stimulation. Code is available at

https://github.com/bionicvisionlab/2025- VRST-SmartRaster.
Our work makes three key contributions:

i. We introduce SemanticRaster, a content-aware raster strategy
that sequences semantic groups over time, offering a new method
for reducing clutter while preserving context under tight stim-
ulation constraints.

ii. We conduct a controlled user study in immersive VR that sys-
tematically compares static and temporally adaptive semantic
encoding strategies using realistic phosphene simulations and
dynamic obstacles.

iii. We show that static and temporally sequenced semantic simpli-
fication confer complementary benefits (higher completion and
lower collision rates, respectively), providing design guidance
for bandwidth-limited XR and next-gen bionic-vision interfaces.

2 Background

Several classes of bionic vision systems are under development,
including retinal, optic nerve, and cortical implants. Retinal de-
vices such as the Argus II [33], Alpha-IMS [51], and suprachoroidal
systems [54] represent the most clinically advanced, while next-
generation systems such as PRIMA [38], ICVP [26], and Neuralink’s
cortical array [36] aim to improve resolution and usability through
denser electrode layouts and flexible implantation strategies.

Most of these systems rely on an external visual processing unit
(VPU) to convert real-time video into stimulation patterns for the
implanted electrode array. While electrical activation can elicit
phosphenes (discrete points of light), the resulting vision remains
highly degraded: resolution is limited [15, 57], visual fields are nar-
row (e.g., 10x20° in Argus II) [33], and percepts are variable and
often distorted by biological factors [2, 50]. Safety limits on simul-
taneous electrode activation further constrain effective resolution,
even as newer devices push electrode counts into the hundreds.

As a result, users often describe bionic vision as unreliable, ef-
fortful, and situationally useful at best [37]. Navigation and scene
understanding remain especially challenging, as the limited field of
view (FoV) necessitates continuous head scanning to piece together
a coherent sense of the environment [13]. Most current systems
ignore eye movements [8], further complicating perceptual stability.

To improve usability and support greater independence, future
prosthetic systems must not only improve hardware, but also in-
telligently preprocess visual input. This includes prioritizing task-
relevant information, reducing clutter, and adapting to the user’s
context and behavior [4]. SPV in immersive VR has emerged as a
powerful tool to prototype and evaluate such strategies, enabling
rapid iteration without the need for implantable hardware.

3 Related Work

SPV in immersive VR has emerged as a powerful testbed for evalu-
ating encoding strategies prior to clinical deployment. Sighted par-
ticipants can act as “virtual patients,” experiencing key constraints
of bionic vision (i.e., reduced resolution, limited FoV, phosphene
blur, and temporal distortions) without the variability introduced by
long-term adaptation or device-specific idiosyncrasies [27, 43, 53].
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While not a substitute for real-world testing, SPV enables con-
trolled, repeatable, within-subject comparisons that are impractical
in clinical studies, especially during early-stage prototyping.

Early work on preprocessing emphasized edge detection and con-
trast enhancement to make scene structure more perceptible [12,
55], though these methods lacked adaptability to tasks or envi-
ronments. For example, Dagnelie et al. [12] found that edge en-
hancement improved detection of large objects but broke down
in cluttered scenes, while Vergnieux et al. [55] showed that con-
trast filtering highlighted scene boundaries at the cost of fine detail
needed for navigation.

More recent studies have applied computer vision to highlight
task-relevant features. Semantic labeling can aid object recognition
in SPV but displaying all classes simultaneously increases clut-
ter [20]. Depth-based preprocessing emphasizes nearby hazards
and improves obstacle avoidance [35, 46], but sometimes suppresses
distal cues. Thorn et al. [53] showed that obstacle avoidance per-
formance degraded sharply as clutter increased, even with edge
enhancement, and Rasla et al. [43] found that relative-depth encod-
ing could improve mobility only under tightly controlled conditions.
Together these findings highlight the trade-off between clarity and
informational value.

To address this, time-multiplexed rendering strategies have been
explored, though only sparingly. Kasowski et al. [28] compared
rastering strategies in SPV and found that a checkerboard pattern
yielded higher accuracy for letter recognition and motion discrimi-
nation than row-wise, column-wise, or random rasters. However,
their stimuli were simple and static, leaving open whether similar
benefits extend to cluttered navigation tasks. Early SPV studies re-
lied on oversimplified visual models [12], but more recent work has
introduced psychophysically validated phosphene simulations that
incorporate fading, spatial distortion, and gaze contingency [2, 27].
Still, these advances have largely lacked temporally adaptive en-
coding aligned with users’ moment-to-moment navigation goals.

Our work builds on this foundation by integrating (i) a biologi-
cally grounded, gaze-contingent phosphene simulation; (ii) seman-
tically informed image processing; and (iii) a novel raster strategy
that sequences object categories based on task relevance. Unlike
prior approaches that treat semantic segmentation as static, Seman-
ticRaster encodes temporal prioritization to emphasize critical cues
(e.g., moving obstacles) while minimizing clutter.

Though motivated by bionic vision, our framework may offer
general-purpose strategies for temporally adaptive scene simpli-
fication in constrained visual displays. By combining perceptual
realism, gaze contingency, and task-aware encoding, this work
advances the design of real-time, user-centered interfaces for im-
mersive and assistive technologies alike.

4 Methods
4.1 Participants

Eighteen participants with normal or corrected-to-normal vision (11
female, 7 male; ages 18—-40; M = 25.04, SD = 5.72) were recruited for
this study. Participants were undergraduate students recruited from
the research participant pool at the University of California, Santa
Barbara, and served as “virtual patients” [27] in SPV experiments.
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Prior experience with VR varied: five participants had never used
VR, while the remaining 13 reported familiarity with the technology,
ranging from 1 to over 20 prior sessions. To minimize risks of
discomfort, participants with known sensitivity to flashing lights
or motion sickness were excluded during the screening process.

The study adhered to the principles of the Declaration of Helsinki
and was approved by the Institutional Review Board at the Univer-
sity of California, Santa Barbara.

4.2 Simulated Prosthetic Vision

We utilized the open-source Unity toolbox BionicVisionXR (https:
//github.com/bionicvisionlab/BionicVisionXR), to simulate pros-
thetic vision within an immersive VR environment. Participants
viewed stimuli through an HTC VIVE Pro Eye head-mounted dis-
play, with phosphene appearance modeled using psychophysically
validated simulations [2, 18, 23]. These simulations incorporated
spatiotemporal dynamics, including phosphene elongation and fad-
ing due to axonal pathways [24] (Section 4.2.1), as well as per-
sistence and decay effects based on charge accumulation dynam-
ics [23] (Section 4.2.2).

To approximate the visual experiences of retinal prosthesis users,
the VR environment featured gaze-contingent rendering (Section
4.2.3), dynamically updating scene content based on participants’
head and eye movements. This ensured a realistic and interactive
simulation of prosthetic vision.

We simulated a 10 X 10 epiretinal electrode array centered over
the fovea, inspired by the Argus II implant [33]. Electrodes were
modeled as point sources with 400 um spacing, consistent with
current-generation retinal prostheses. All simulations were ren-
dered on a high-performance desktop computer (Intel i9-11900k,
64GB RAM, Nvidia RTX3090) and wirelessly transmitted to the
head-mounted display.

This setup balances generalizability with alignment to near-
future prosthetic technologies, providing a robust platform for
evaluating visual preprocessing strategies in SPV. The entire SPV
workflow was thus as follows (Fig. 2):

i. Image acquisition: Unity’s virtual camera captured a 60° FoV,
rendered at 90 Hz.

ii. Image processing: Frames were downscaled to 200 X 200 pixels,
converted to grayscale, and smoothed with a 3 x 3 Gaussian
kernel.

iii. Electrode activation: Pixel intensities nearest to each electrode
were used to compute activation levels.

iv. Spatiotemporal effects: Phosphene shapes were modeled using
the axon map model [2, 18], simulating elongated phosphenes
aligned with retinal ganglion cell axons. A temporal model [23]
simulated phosphene fading and persistence by accounting for
charge accumulation and decay.

v. Gaze-contingent rendering: The implant location dynamically
shifted based on gaze position, ensuring the scene remained
aligned with participants’ fixation.

4.2.1 Spatial Distortions. The shape of phosphenes in epiretinal
devices is influenced by the retinal ganglion cell axons, which
traverse the retina in curved paths [2, 45]. We used the axon map
model to simulate these distortions [2, 18]. Each electrode activated
a region of the retina defined by Gaussian falloff parameters p
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Figure 2: Simplified overview of the SPV pipeline. Unity’s virtual camera captured scenes while tracking gaze position (“Image
acquisition"). Frames underwent scene simplification, scaling, and grayscale conversion to mimic preprocessing by a visual
processing unit (“Image processing"). Electrode activation levels were derived from pixel intensities, with temporal sequencing
strategies grouping electrode activations over time (“Electrode activation"). The example illustrates grouped activation of the
top two rows of electrodes. Spatial distortions were modeled using an axon map, and temporal effects like fading and persistence
were integrated to simulate prosthetic vision (“Prosthetic vision"). The resulting percept was rendered to participants via a

head-mounted display (“Render").

(spread) and A (elongation). The instantaneous brightness by of
each pixel (r, 0) in the percept was computed according to:

by = max Z exp (_d‘g + ﬁ)’ (1)
PER(0) £ 2p? 212

where R(6) is the path of the axon terminating at retinal location
(r,0), p is a point along the path, d, is the distance from p to the
stimulating electrode e, and dsoma is the distance along the axon
from p to the cell body. Spatial distortions were modeled using
medium levels of elongation and spread, as reported in earlier psy-
chophysical studies [2], with p = 200 pm (spread) and A = 400 pm
(elongation). These parameters were selected to represent typical
distortions experienced by prosthesis users, balancing realism and
perceptual clarity for the purposes of the study. By keeping these
parameters constant across conditions, we ensured that observed
differences in performance were attributable to the preprocessing
strategies rather than variations in spatial distortions.

4.2.2  Temporal Distortions. To model temporal dynamics, we used
a simplified variant of the Horsager et al. [23] model, which in-
corporates two coupled leaky integrators to simulate neural de-
sensitization n(t) and phosphene brightness b(t). The governing
equations were:

W) — —can(t) + bi(1), @
P~ eyb(1) — an(t) + by (1), 3

where by(t) was the instantaneous brightness (from the spatial
model) calculated at time t. Parameter values (z, = 0.2s, 7, =
5s, and @ = 0.2) were fitted to reproduce temporal fading and
persistence effects reported by Subject 5 of Pérez Fornos et al. [41]
(see their Figure 4).

4.2.3 Gaze-Contingent Phosphene Rendering. Modern retinal pros-
theses rely on head-mounted cameras, so visual input is head-
centered rather than eye-centered. To simulate this realistically,
we implemented gaze-contingent rendering that re-centered the

implant display on the participant’s fixation point in real time. Us-
ing the HTC Vive Pro Eye, each video frame was shifted according
to gaze position, ensuring phosphenes were rendered in retinal
coordinates and moved naturally with the eyes. This step is critical
for reproducing perceptual effects such as fading, streaking, and
local adaptation [39, 41]; without it, stimulation would remain fixed
to the screen, producing smeared or distorted percepts during eye
movements.

Our setup achieved a mean eye-tracking precision of 1.9°, with
94 % of samples within 5° of the target (see Supplementary Material).
Gaze-contingent stimulation is increasingly recognized as essential
for biologically plausible SPV [8, 28, 39], and future implants are
expected to support it through onboard sensors or external eye
trackers.

4.3 Scene Simplification Strategies

To evaluate the effect of different scene simplification strategies
on wayfinding performance, the SPV system rendered visual input
using three distinct strategies:

i. Control: This baseline condition applied a standard 3 X 3 So-
bel kernel to the input for edge detection. While effective for
emphasizing structural boundaries, this method lacked task-
specific prioritization, often resulting in a cluttered visual field
that could overwhelm users in complex environments.

ii. SemanticEdges: A semantically informed edge filter that em-
phasized high-priority objects (e.g., pedestrians, bicycles, and
structural features) based on scene understanding. A 7 x 7 Sobel
kernel enhanced edges while suppressing irrelevant background
details, reducing clutter and emphasizing salient features.

iii. SemanticRaster: A novel strategy that combined semantic seg-
mentation with temporal prioritization. Rather than displaying
all object classes simultaneously, this mode cycled through key
object categories over time (200 ms per class), repeatedly dis-
playing bicycles, then pedestrians, then structural edges. This
schedule aimed to reduce crowding and improve perception
under the low-resolution constraints of SPV (Fig. 3).
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Figure 3: Scene simplification strategies tested in the study. The raw RGB image (top center) was processed using three methods.
Control (top left) applied a 3 x 3 Sobel filter to highlight edges without prioritizing task-relevant features. SemanticEdges (top
right) used semantic segmentation and a 7 x 7 kernel to enhance edges of selected classes (bicycles, pedestrians, and structures).
SemanticRaster (bottom) grouped semantic categories and displayed them sequentially over time, cycling semantic groups over
time with higher update rates for dynamic objects. The final panel(s) for each method show(s) simulated prosthetic vision
(SPV) output rendered in retinal coordinates; red dashed boxes mark the limited field of view of the SPV rendering.

4.3.1 Task Relevance and Raster Schedule. An object class was
deemed task-relevant if (i) the task involved interacting with, avoid-
ing, or locating it, and (ii) failure to perceive it impaired performance
(e.g., more collisions or timeouts). Classes were identified with in-
put from a blind consultant and an O&M specialist. For wayfinding,
this yielded three key classes (bicycles, pedestrians, and structural
edges) in that order of importance. SemanticRaster reflected this
priority by allocating equal temporal slots (200 ms) to each class,
with higher-ranked categories recurring more frequently.

This framework generalizes: a street-crossing task might prior-
itize cars and crosswalks, while an indoor task might emphasize
doors and furniture. The rastering mechanism is unchanged; only
the class set and ordering vary, based on structured input from end
users and task pilots [16, 22].

4.3.2  Stimulation Constraints. Although these strategies priori-
tized relevant information, they still required stimulating many
electrodes per frame, risking safety limits. To mitigate this, all strate-
gies used a checkerboard raster pattern shown to be perceptually
effective [28], alternating activation across the grid to avoid simulta-
neous neighbors. Cycling at 90 Hz to match the headset refresh, this

approach exploited temporal integration to yield coherent percepts
while minimizing crosstalk and phosphene fusion.

4.4 Task & Environment

Participants completed an ambulatory wayfinding task in a SPV
environment modeled after a 7.5m X 7.5 m urban square (Fig. 4).
The square featured dynamic obstacles (bicycles, pedestrians) and
static ones (benches, lampposts), with spatialized sound for realism.
The objective was to walk from the starting position (in front of the
fountain) to one of two subway entrances while avoiding collisions.
Participants navigated by walking in the tracked space.

Static obstacle configurations (e.g., benches, standing pedestri-
ans) were drawn from a set of predefined layouts, with one pseudo-
randomly selected per trial to increase variability. This ensured that
all trials were comparable in difficulty while preventing participants
from memorizing obstacle layouts. Dynamic obstacles followed pre-
defined paths, but their speed and timing were randomized across
trials to prevent memorization. The SPV simulation reflected key
constraints of current bionic vision systems, including a reduced
FoV (14.6° X 14.6°) and a phosphene resolution of 10X 10 electrodes,
rendered in a gaze-contingent and temporally dynamic manner.
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Figure 4: Task environment in the simulated urban square. (A) Overhead view showing the two possible goal locations (“Goal L”
and “Goal R”), the designated bike lane for spawning cyclists, and two obstacle zones (“Obstacle Zone L” and “Obstacle Zone
R”) used for pseudorandom placement of static objects on each trial. (B) Example first-person view of one trial instantiation,
with spawned pedestrians, cyclists, and static obstacles (e.g., benches, fountain). The white square marks the starting position.
Participants were instructed to navigate to the assigned goal entrance while avoiding collisions. Trials ended successfully when
the participant reached the correct entrance, or terminated early due to a bicycle collision or exceeding the 50 s time limit.

To ensure participant safety during the ambulatory task, the vir-
tual environment was overlaid onto a large, obstacle-free physical
space. A trained experimenter continuously monitored participants
and was ready to intervene if needed. The VR headset (HTC Vive
Pro Eye) was connected to the rendering computer via a high-
bandwidth wireless adapter, eliminating tethering cables that could
pose tripping hazards during walking. This wireless link introduced
no perceptible latency (all rendering remained at 90 Hz), and thus
did not affect task performance.

4.4.1 Training Phase. Participants completed a structured training
session to acclimate to the SPV environment and task mechan-
ics. The session included five rounds in a simplified virtual scene
with both static and dynamic obstacles. The first four rounds used
normal vision. The final round introduced SPV, including tempo-
ral distortions and one of the three scene simplification modes
(Control, SemanticEdges, or SemanticRaster), corresponding to the
participant’s upcoming block. Participants practiced navigating and
intentionally colliding with virtual objects (e.g., trashcans, bicycles)
to experience the auditory and visual collision feedback. To avoid
double-counting, a cooldown period suppressed additional collision
registration until the participant had moved at least 0.25 m away
(see Supplementary Material).

4.4.2  Experimental Procedure. The experiment followed a within-
subjects block design in which participants completed all three
strategies (Control, SemanticEdges, and SemanticRaster). The Control
block was always presented first to prevent carryover: exposure to

semantic overlays can induce head-scanning strategies that would
inflate baseline performance. The two semantic blocks were coun-
terbalanced. Each block consisted of 10 trials, for a total of 30 trials
per participant.

In each trial, participants had up to 50 s to walk to the assigned
subway entrance while avoiding collisions. A trial ended success-
fully when the goal was reached, or failed if the participant collided
with a bicycle or exceeded the time limit. A countdown timer ap-
peared with 10 seconds remaining to discourage idling and maintain
consistent time pressure.

4.5 Data Collection & Analysis

Performance was assessed on five metrics: (i) Task success: reaching
the assigned entrance within 50 s (bicycle collisions ended the trial;
other collisions did not); (ii) Collision-free completion: success with
zero collisions; (iii) Collision rate: total collisions per trial, split by
obstacle type; (iv) Completion time: time to goal for successful trials;
(v) Task difficulty: block-wise self-ratings on a 10-point Likert scale.
Data were analyzed with mixed-effects models matched to out-
come type. Unlike mixed ANOVA, GLMMs provide the appropriate
link functions for binary/count data and accommodate participant-
level random effects. All models included a fixed effect of Condition
(Control, SemanticEdges, SemanticRaster) and a random intercept for
SubjectID. Because Control always came first, we tested for learn-
ing by adding a centered trial index and Condition X TrialIndex
interaction; these did not improve model fit. For difficulty, block
order was included as a covariate; main effects were unchanged.
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Figure 5: Task performance metrics across conditions. (A) Success rate: proportion of trials completed without collisions or
time-outs. (B) Fraction of successful zero-collision trials. (C) Trial completion time in seconds. (D) Average number of collisions
per trial. (F) Average number of collisions involving static structures (e.g., fountain, bench, standing pedestrians). (E) Average
number of collisions involving moving obstacles (i.e., bicycles). Each point represents a participant; boxplots show median,
interquartile range, and range. Statistical significance between conditions is denoted by * (p < .05).

Binary outcomes (e.g., success) were fit with logistic GLMMs,
Success ~ Condition+TrialIndex+(1+TrialIndex | SubjectID).
Collision counts used Poisson GLMMs, Collisions ~ Condition+
TrialIndex + (1| SubjectID); overdispersion was checked with
DHARMa and, where present, results were confirmed with Nega-
tive Binomial GLMMs (see Supplementary Material). Completion
times were modeled with linear mixed-effects regression, Time ~
Condition + TrialIndex + (1 + TrialIndex | SubjectID). Diffi-
culty ratings (ordinal 1-10) used cumulative link mixed models,
Difficulty ~ Condition + Order + (1 | SubjectID).

Models were fit in R (1me4 for LMM/GLMMs, g1mmTMB for NB fits,
and ordinal: : clmmfor cumulative link models); post-hoc contrasts
were obtained with emmeans, Tukey-corrected. A simulation-based
sensitivity analysis (Supplementary Material) indicated that the

within-subject design (18 participants x 10 trials/condition) had 80%
power to detect medium-to-large effects on task success, but lower
power (30-57%) for smaller changes in collision rates.

5 Results
5.1 Task Success

We first examined the impact of scene simplification on task success,
defined as reaching the goal before the timer expired (Fig. 5A). A
generalized linear mixed-effects model (GLMM) with fixed effects
of Condition and centered TrialIndex, and by-subject random
intercepts and learning slopes, revealed a significant benefit for the
SemanticEdges condition: participants were 1.84 times more likely
to complete the task successfully compared to the Control baseline
(B = 0.61 £0.24, z = 2.59, p = .009). SemanticRaster showed a
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Figure 6: Difficulty ratings: Participants rated each condi-
tion’s difficulty on a 10-point Likert scale (1 = very easy, 10 =
very hard). Both smart strategies significantly reduced per-
ceived difficulty compared to Control (* p < .05).

smaller, non-significant improvement (f = 0.27, p = .24). There was
a modest learning effect across trials (f = 0.045, z = 3.99, p < .001),
but no significant interaction between condition and trial index
(x?(2) = 0.17, p = .92), suggesting that the scene simplification
effects were stable over time.

To evaluate whether simplification also led to cleaner navigation,
we examined the odds of completing a trial collision-free (Fig. 5B). A
separate GLMM (logit link) indicated that both SemanticEdges and
SemanticRaster increased the likelihood of a clean run compared to
the baseline (SemanticEdges: OR = 1.8, p = .086; SemanticRaster: OR
= 2.1, p = .018), independent of trial index (p > .9), suggesting that
even when overall success rates are similar, SemanticRaster may
help users navigate more cleanly when successful.

Completion time did not vary significantly by condition or trial
index (all |¢| < 1.3, p > .25), indicating that these gains in accu-
racy were not simply due to participants slowing down (Fig. 5C).
Timeouts were rare, occurring on only 10 out of 540 trials (< 2%),
further indicating that participants generally completed the task
within the allotted time regardless of condition.

A Condition x TrialIndex interaction term was added to each
model to test whether learning differed between strategies. Across
all three outcomes (success, collision counts, trial time), the interac-
tion was non-significant (all p > .50), indicating that participants
improved (or plateaued) at comparable rates under SemanticRaster
and SemanticEdges. Thus, SemanticRaster’s cleaner-run advantage
does not appear to hinge on an extended learning period.

5.2 Collision Rates

To better understand error patterns, we analyzed collision counts
using Poisson GLMMs (Fig. 5D). Both SemanticEdges and Semanti-
cRaster significantly reduced total collisions compared to Control,
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by 21% and 26%, respectively (SemanticEdges: f = —0.236, p = .009;
SemanticRaster: § = —0.303, p = .001). No significant difference
emerged between the two smart strategies (f = 0.067, p = .77), and
collision rates remained stable across trials (p = .49).

Breaking down collisions by object type revealed that these im-
provements were driven by reductions in contact with static obsta-
cles (Fig. 5E). Both SemanticEdges and SemanticRaster significantly
decreased stationary collisions relative to Control (SemanticEdges:
-18%, f = —0.203, p = .035; SemanticRaster: —26%, § = —0.302,
p =.003). Again, the two smart modes did not differ significantly
(p = .61), and there was no effect of trial index (p = .12).

Collisions with moving obstacles (e.g., cyclists) were rarer over-
all (Fig. 5F), but a marginal trend suggested that SemanticEdges
may reduce such collisions relative to baseline (f = —0.443, p =
.067); the effect for SemanticRaster was smaller and non-significant
(B = —0.324, p = .17). Trial index showed a weak trend toward
improvement (p = .055), but participant-level variance was negligi-
ble (singular fit). These results suggest that smart simplification is
more effective for managing static than dynamic hazards.

Taken together, these findings indicate that improved perfor-
mance was primarily driven by the simplification strategies them-
selves, rather than by learning across trials.

5.3 Perceived Difficulty

Finally, after completing all trials of a given condition, participants
rated its difficulty on a 1-10 scale (Fig. 6). A cumulative link mixed
model revealed a significant effect of condition: both SemanticEdges
(B = —1.66, p = .004) and SemanticRaster (f = —1.47, p = .010)
were perceived as less difficult than Control. There was also a trend
for later blocks to be rated as easier overall (f = —0.48, p = .085).
Pairwise contrasts on the latent scale confirmed these findings:
both smart modes were rated significantly easier than Control (Se-
manticEdges: p = .012; SemanticRaster: p = .027), but did not differ
from each other (p = .94). These subjective ratings align with the
objective performance improvements observed above.

6 Discussion

This study evaluated two semantic scene simplification strategies
(SemanticEdges and SemanticRaster) for wayfinding in SPV. Both im-
proved outcomes over a conventional baseline, but in different ways:
SemanticEdges increased task success, whereas SemanticRaster im-
proved collision-free completions. These complementary benefits
underscore the value of semantically driven preprocessing.

6.1 Complementary Roles of Static and
Temporal Simplification

A static overlay of all task-relevant classes supported global aware-
ness, yielding more completed trials (Fig. 5A). Sequencing those
classes reduced clutter, resulting in fewer collisions (Fig. 5B) and
lower self-reported effort (Fig. 6). Presenting everything at once
maximizes information but risks crowding, whereas staggering
lightens instantaneous load but hides context briefly. Which strat-
egy is preferable depends on what “failure” means: missing an exit
(SemanticEdges helps) vs. clipping a hazard (SemanticRaster helps).

Neither strategy harmed baseline performance, and participants
acclimated within a few trials. Across 30 trials we observed only
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modest learning, and difficulty ratings dropped by 1.5-2 points for
both smart strategies. This rapid uptake is encouraging, given that
perceptual learning in implant users is often measured in weeks or
months [11, 13, 52].

6.2 Relevance for Temporally Multiplexed
Implants

Modern prostheses already use raster-like stimulation because
safety rules restrict simultaneous electrode activation [33]. Our
SemanticRaster shows that this temporal budget can convey task
semantics: rather than sweeping the array spatially, firmware could
sweep through semantic layers (hazards — landmarks — context).
Although our experiment used a three-layer schedule, the princi-
ple of content-aware time-division aligns with calls for adaptive
stimulation policies tailored to task and context [4]. The specific
categories are not universal (they were chosen for this task with
input from a blind consultant and O&M specialist) and future co-
design studies must refine categories, priorities, and update rates
for different applications.

6.3 Connections to Bandwidth-Limited XR

Low-bandwidth can be defined along two axes: (i) stimulation band-
width, limited by the fraction of electrodes active per frame and
total pulse rate, and (ii) compute/throughput budget for preprocess-
ing. In our SPV, a 10 X 10 checkerboard raster activated at most 50
electrodes per subframe at 90 Hz, i.e., <50% duty cycle. Semanti-
cRaster respects this budget by time-dividing semantic layers rather
than adding concurrent activity. On the compute side, our pipeline
ran at 90 Hz on a desktop; deployable systems could use lightweight
segmentation or belt-worn VPUs for real-time performance.

Similar constraints arise in AR, telepresence, and low-vision aids,
where pixel budgets are limited not only by hardware (microdisplay
resolution, battery, link bitrate) but also by attention [19, 40]. XR
systems often reduce peripheral resolution, drop frames, or stream
sparse features when bandwidth degrades. Our results suggest that
multiplexing entire semantic layers is another viable strategy when
clutter is the bottleneck, consistent with the view of bionic vision as
a form of neuroadaptive XR that dynamically allocates bandwidth
in closed loop with user state and task demands [1].

6.4 Why Simulate Bionic Vision in Sighted
Participants?

Because no large user base of implant recipients exists, clinical
studies remain small and heterogeneous. SPV is therefore a widely
used, cost-effective testbed for early-stage evaluation [7, 30, 35].
While sighted participants cannot model long-term neural adapta-
tion, they enable controlled, within-subject comparisons [3]. Our
use of psychophysically validated phosphene models moves be-
yond simplistic blob renderings [9, 12, 32, 47] and supports rapid
prototyping before clinical deployment [4].

6.5 Limitations & Future Directions

Our study addressed a single navigation task in a controlled VR set-
ting. Generalization to other tasks, environments, and users remains
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to be tested. Although our simulation incorporated fading and dis-
tortion, it cannot capture the full variability of real prosthesis users
(e.g., electrode-retina interactions, cortical plasticity [29, 34]). A
design limitation is that Control was not counterbalanced. We chose
this to avoid carryover from semantic overlays; learning/order
checks suggest minimal impact, but future work should counter-
balance fully or interleave conditions. Finally, dynamic obstacles
remain a challenge: none of the strategies significantly reduced col-
lisions with moving objects, motivating motion-aware or adaptive
encoding techniques.

Despite these limitations, our results show that semantic simplifi-
cation—and especially temporal structuring—can reduce perceptual
burden in prosthetic vision. Progress toward intelligent, adaptive
systems [4, 31, 42] will require closing the loop between simulation
and clinical deployment, ideally through collaborative studies with
implanted users [13, 37]. Combining computer vision with adaptive,
multimodal feedback could empower users to navigate complex
environments with greater independence.

7 Conclusion

We compared two semantic preprocessing strategies for prosthetic
vision: one highlighting all task-relevant objects simultaneously
(SemanticEdges), the other sequencing them over time (Semant-
icRaster). Both improved wayfinding over a traditional baseline,
with SemanticEdges aiding global awareness and SemanticRaster
reducing collisions. These findings support temporally adaptive,
task-informed encoding as a design principle for clutter-aware XR
interfaces and next-generation prosthetic vision.
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