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Abstract— Retinal prostheses restore vision by electrically
stimulating surviving neurons, but calibrating perceptual
thresholds (i.e., the minimum stimulus intensity required for
perception) remains a time-intensive challenge, especially for
high-electrode-count devices. Since neighboring electrodes ex-
hibit spatial correlations, we propose a Gaussian Process
Regression (GPR) framework to predict thresholds at unsam-
pled locations while leveraging uncertainty estimates to guide
adaptive sampling. Using perceptual threshold data from four
Argus II users, we show that GPR with a Matérn kernel
provides more accurate threshold predictions than a Radial
Basis Function (RBF) kernel (p < .001, Wilcoxon signed-rank
test). In addition, spatially optimized sampling yielded lower
prediction error than uniform random sampling for Partici-
pants 1 and 3 (p < .05). While adaptive sampling dynamically
selects electrodes based on model uncertainty, its accuracy
gains over spatial sampling were not statistically significant
(p > .05), though it approached significance for Participant 1
(p = .074). These findings establish GPR with spatial sampling
as a scalable, efficient approach to retinal prosthesis calibra-
tion, minimizing patient burden while maintaining predictive
accuracy. More broadly, this framework offers a generalizable
solution for adaptive calibration in neuroprosthetic devices with
spatially structured stimulation thresholds, paving the way for
faster, more personalized system fitting in future high-channel-
count implants.

Clinical Relevance—Gaussian Progress Regression offers a
scalable path toward faster, more personalized calibration pro-
cedures for future high-channel-count neuroprosthetic devices.

I. INTRODUCTION

Retinal degenerative diseases, such as retinitis pigmentosa and
age-related macular degeneration, lead to the progressive loss of
photoreceptors, ultimately resulting in profound vision impairment.
Visual prostheses offer a potential intervention by electrically
stimulating the remaining retinal neurons to evoke visual per-
cepts [1]. However, achieving functional vision with these devices
requires careful calibration of stimulation parameters, particularly
the perceptual thresholds; that is, the minimum stimulus amplitude
required to elicit a visual response.

Traditionally, perceptual thresholds are determined through ex-
tensive psychophysical testing, where stimuli of varying amplitudes
are presented in a trial-by-trial manner, and patients report their
perceptual experiences [2], [3]. Although effective, this approach
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is time-consuming and labor-intensive, requiring tens of trials per
electrode and frequent recalibrations due to threshold drift over
time [4], [5]. In addition, thresholds exhibit substantial variability,
both across subjects and among electrodes within the same implant,
due to factors such as electrode-neuron distance, impedance, and
local retinal health [2], [3], [6], [7]. This variability makes cal-
ibration (“system fitting”) an ongoing clinical challenge. Recent
work has also highlighted the importance of aligning research
priorities with the real-world experiences and usability needs of
prosthesis users [8], further motivating the development of calibra-
tion strategies that minimize patient burden, especially as future
prostheses aim to scale from dozens to hundreds or thousands of
electrodes [9]–[11].

Current calibration strategies attempt to reduce the number of
trials per electrode using adaptive psychophysical methods. For
example, the Argus II epiretinal implant (60 electrodes) [12]
employs a hybrid threshold estimation approach, combining the
maximum likelihood method to adjust the stimulus range with the
method of constant stimuli to estimate the perceptual threshold,
requiring between 30 and 90 trials per electrode [13]. Bayesian
adaptive procedures [14], [15] further reduce the number of trials
to 11–30 per electrode, but this still results in over 600–1,800 trials
per session, presenting a substantial burden to users.

Critically, perceptual thresholds are not independent across elec-
trodes. Due to the spatial arrangement of retinal implants, neighbor-
ing electrodes often exhibit correlated thresholds, reflecting shared
neural activation zones, current spread, and biological factors. This
spatial structure suggests that a more principled, model-driven ap-
proach could infer unsampled thresholds by leveraging correlations,
dramatically reducing the number of measurements needed.

To address this, we propose a framework based on Gaussian
process regression (GPR) to model the spatial structure of per-
ceptual thresholds and reduce the number of required electrode
measurements. While GPR has been widely applied in spatial
modeling across other domains [17], this study represents the first
application of GPR to threshold estimation in visual prosthetics. By
treating the threshold map as a continuous spatial field, GPR enables
both threshold prediction at unsampled electrodes and uncertainty
quantification, laying the foundation for data-efficient, adaptive
sampling strategies.

As a proof of concept, we evaluate our framework using real-
world threshold data from four Argus II users [16]. We system-
atically compare different GPR kernel functions to identify those
best suited for modeling spatial variations in thresholds, and we
benchmark several sampling strategies—including uniform random,
spatially structured, and uncertainty-driven adaptive selection.

Our results demonstrate that GPR, combined with spatially opti-
mized sampling, achieves highly accurate threshold predictions with
far fewer measurements than traditional methods. Moreover, we find
that while adaptive sampling can provide further refinements, spatial
sampling alone often suffices, thereby offering a simple and robust
solution for future high-density implants.

Beyond the context of retinal prostheses, this framework offers
a generalizable strategy for adaptive calibration in other neu-
roprosthetic systems where stimulation thresholds exhibit spatial
correlations.



Fig. 1. Perceptual threshold maps for four Argus II users, displayed on a 6 × 10 electrode array. Thresholds (in µA) were estimated using a Bayesian
adaptive method [16] and are shown on a logarithmic color scale (dark blue = lowest, dark red = 677 µA). Inactive electrodes are marked with a cross.

II. METHODS

A. Dataset
We used 240 previously published perceptual thresholds from

four participants implanted with the Argus II epiretinal prosthe-
sis [16] (Fig. 1), which contains a 6×10 array of 60 electrodes [12].
Perceptual thresholds were estimated using a Bayesian adaptive
method in a yes/no procedure, as described in [15], where par-
ticipants indicated whether they perceived a stimulus.

Each electrode required between 11 and 30 measurements to
determine its threshold, ensuring reliable estimation while balancing
participant fatigue. The current amplitude thresholds were estimated
between 40 µA and 677 µA using 60 logarithmically spaced values.
A maximum current of 677 µA was imposed due to device safety
limits, meaning electrodes that required higher currents for percep-
tion were recorded as having the maximum value.

All other pulse parameters were fixed, with a pulse width of
0.45ms, and a frequency of either 6Hz or 20Hz based on the
participant’s preference.

B. Gaussian Process Regression
To model the spatial variations in perceptual thresholds across

the electrode array, we employed Gaussian process regression
(GPR), a non-parametric Bayesian approach that provides a flexible
framework for modeling spatially correlated data [17]. In our
framework, the covariance between any two points xi and xj is
defined by a kernel function k(xi,xj), which encodes assumptions
about threshold variations across the implant.

Retinal prosthesis users exhibit complex spatial patterns in their
perceptual thresholds (Fig. 1), which can be attributed to factors
such as electrode-retina distance, impedance variations, and local-
ized retinal damage [3], [7]. These patterns include both smooth
global trends (e.g., due to gradual changes in tissue-electrode
coupling) and sharp local discontinuities (e.g., due to scarring or
nonfunctional electrodes). To accommodate these diverse spatial
structures, we evaluated three kernels k(xi,xj), detailed below.

1) Radial Basis Function (RBF) Kernel: The RBF kernel
assumes that perceptual thresholds vary smoothly across the array.
It is defined as:

k(xi,xj) = σ2 exp

(
−dij2

2ℓ2

)
, (1)

where σ2 is the signal variance (controlling the function’s overall
variability), dij is the Euclidean distance between xi and xj , and
ℓ is the length scale (which determines how quickly correlations
decay with distance). To balance flexibility and robustness, we
initialized σ2 in the range (0.1, 10) to prevent over-scaling and ℓ in
the range (1, 50) to avoid overfitting to local noise. In addition,
a noise term σ2

nδij was included in the kernel to account for
experimental variability.

The RBF kernel is well-suited for modeling gradual changes
in perceptual thresholds, such as those arising from electrode

impedance variations or spatially consistent tissue-electrode cou-
pling. However, its strong smoothness assumption makes it ill-
equipped to handle sharp threshold discontinuities.

2) Matérn Kernel: The Matérn kernel extends GPR’s flexibil-
ity by allowing for non-smooth variations, making it better suited
for threshold maps with sharp transitions. We used the Matérn
kernel with ν = 1.5, which is defined as:
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Like RBF, it includes σ2 as the signal variance and ℓ as the length
scale, which controls how rapidly correlations decay. We used the
same parameter constraints as RBF, namely σ2 ∈ (0.1, 10), ℓ ∈
(1, 50), σ2

nδij included for experimental noise. The key difference
is that the Matérn kernel does not enforce smoothness to the same
degree as RBF, allowing it to model sharp threshold boundaries,
such as those caused by localized scarring, poor electrode-retina
contact, or damaged regions.

3) Hybrid Matérn + RBF Kernel: To leverage the advan-
tages of both smooth and non-smooth models, we implemented a
hybrid kernel:

k(xi,xj) = σ2 [αRBF(ℓ1) + (1− α)Matérn(ℓ2)] . (3)

Here, α is a weighting parameter that balances the RBF and Matérn
contributions, and ℓ1 and ℓ2 represent separate length scales for
smooth and discontinuous variations, respectively.

This hybrid approach defaults to RBF-like behavior (α ≈ 1) in
areas where perceptual thresholds are smooth, but can shift toward
Matérn-like behavior (α ≈ 0) where threshold discontinuities exist.
Therefore, the hybrid approach may be beneficial especially for
implants with spatially mixed threshold structures, where some
electrodes exhibit strong correlations while others show abrupt
changes.

4) Optimization and Evaluation: Each GPR model (with its
open parameters σ2 and ℓ) was trained on a subset of available
threshold data and tested on held-out electrodes to evaluate perfor-
mance. Model hyperparameters were optimized by maximizing the
log marginal likelihood (LML), a standard approach in GPR that
ensures the learned function captures the underlying data structure
effectively [17].

To assess model accuracy, we computed the Mean Absolute
Percent Error (MAPE), defined as:

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100. (4)

This metric quantifies the relative deviation of predicted thresholds
(ŷi) from actual measured values (yi), making it robust to variations
in absolute threshold levels. Unlike standard mean absolute error,
MAPE accounts for the relative importance of different electrodes,
particularly in cases where thresholds span multiple orders of
magnitude.



Fig. 2. Mean absolute percentage error (MAPE) as a function of the number of sampled electrodes for four participants (P1–P4). Rows correspond
to different sampling strategies (uniform, spatial, adaptive), while columns correspond to individual participants. Each plot compares the performance of
three Gaussian Process Regression (GPR) kernels: Radial Basis Function (RBF, blue), Matérn (orange), and Matérn+RBF (green). Error bars indicate the
standard error of the mean (SEM) across ten iterations. Dashed horizontal lines represent reference error levels (10, 15, 20, 50 MAPE).

Importantly, GPR provides both point estimates and uncertainty
measures for each prediction. The predictive variance serves as a
confidence metric, which can be used to guide adaptive sampling
strategies by prioritizing high-uncertainty regions for measurement.

C. Electrode Sampling Strategies
To efficiently estimate perceptual thresholds while minimizing

the number of sampled electrodes, we employed three distinct
sampling strategies: uniform random sampling, spatial sampling,
and adaptive variance-based sampling. The choice of sampling
strategy directly impacts the model’s ability to reconstruct the full
threshold map while reducing measurement burden.

1) Uniform Random Sampling: Uniform random sampling
selects electrodes randomly from the valid set without replacement.
This ensures an unbiased selection process but can lead to un-
even spatial coverage, with electrodes clustering in certain regions
while leaving others undersampled. Such clustering can degrade
model performance by failing to capture large-scale spatial trends
in threshold variations. Despite its limitations, uniform sampling
serves as a baseline against which more structured sampling ap-
proaches can be compared.

2) Spatial Sampling: To mitigate the uneven coverage issues
of random selection, we implemented a spatial sampling strategy
based on Poisson disk sampling (PDS). This method enforces a
minimum spacing constraint, ensuring that sampled electrodes are
evenly distributed across the array.

PDS begins with a randomly selected seed electrode. Subsequent
electrodes are iteratively chosen to maximize pairwise distances,
preventing excessive clustering. Candidates are proposed within an
annular region around previously sampled electrodes, and each is
accepted only if it remains sufficiently distant from all previously
chosen points. If no valid candidates remain after a predefined
number of attempts, the sampling process terminates.

By ensuring even spatial coverage, this method improves the
ability of the model to interpolate across unsampled locations,
particularly when the number of sampled electrodes is small.

3) Adaptive Variance-Based Sampling: In addition to struc-
tured spatial sampling, we implemented an adaptive sampling
procedure that dynamically selects electrodes based on model
uncertainty, leveraging GPR’s predictive variance.

This procedure begins by training an initial GPR model on a
small, randomly selected subset of electrodes. Using this model,
we estimate perceptual thresholds for the remaining electrodes and
compute the predictive uncertainty (i.e., the standard deviation of
the posterior distribution at each electrode). Electrodes with the
highest uncertainty are then prioritized for subsequent measure-
ments, as sampling these locations is expected to provide the
most informative data for refining the threshold map. This iterative
process continues until a predefined number of electrodes have been
sampled. At each step, the model is updated incrementally with
new measurements, reducing uncertainty and improving threshold
estimates across the array.

Unlike uniform or spatial sampling, this variance-driven ap-
proach is adaptive, meaning the locations selected depend on the
evolving structure of the threshold map rather than a fixed spatial
pattern. This procedure may be most beneficial when threshold
variations are highly localized, but it may not always outperform
spatial sampling in cases where thresholds are smoothly distributed.

D. Statistical Analysis
For statistical comparisons of kernel and sampling strategies,

we used the Wilcoxon signed-rank test, a non-parametric method
suitable for paired, non-normally distributed data. P-values were
computed separately for each participant and across all participants
combined, with a significance threshold of p < .05.



III. RESULTS

A. Effect of Kernel Choice on Prediction Accuracy
Fig. 2 shows the performance of different GPR models across

four participants, comparing the Matérn, RBF, and Matérn+RBF
kernels as a function of the number of sampled electrodes. Each
model was trained using either uniform, spatial, or adaptive sam-
pling, with mean absolute percentage error (MAPE) as the primary
evaluation metric.

Across all participants, the Matérn kernel consistently outper-
formed RBF, yielding lower MAPE values across most sample sizes
(p < .001, Wilcoxon signed-rank test). The RBF kernel exhibited
greater variance and fluctuations in accuracy, suggesting increased
sensitivity to sample selection and overfitting when the training set
was unevenly distributed.

At the participant level, the Matérn kernel significantly outper-
formed RBF in all four cases (Participant 1: p < .001, Participant
2: p < .01, Participant 3: p < .05, Participant 4: p < .001). The
Matérn+RBF hybrid did not improve upon the standard Matérn
kernel in any participant (p > .05).

Beyond kernel comparisons, MAPE trends across sample sizes
highlight the feasibility of reducing electrode measurements without
major performance loss. When sampling as few as 20 electrodes,
models trained with a Matérn kernel achieved MAPE values below
20%, with further improvements as more electrodes were sampled.
In optimal conditions, where spatial sampling was used with
the Matérn kernel, MAPE dropped below 10% at 50 sampled
electrodes, suggesting that accurate threshold estimation can be
achieved with fewer measurements than traditional exhaustive test-
ing.

These results establish the Matérn kernel as the most effective
choice for modeling perceptual thresholds, offering both stability
and flexibility. The failure of the hybrid Matérn+RBF kernel to
provide additional benefits suggests that the standard Matérn for-
mulation is sufficient for capturing the spatial structure of perceptual
thresholds without unnecessary parameter tuning.

B. Effect of Sampling Strategy on Prediction Accuracy
Across all participants, spatial sampling significantly outper-

formed uniform sampling (p < .01), with the greatest improve-
ments observed when fewer electrodes were sampled. At the par-
ticipant level, spatial sampling was significantly better than uniform
in Participants 1 (p < .001) and 3 (p < .05), while no significant
differences were observed in Participants 2 and 4.

Adaptive sampling, designed to iteratively select high-uncertainty
electrodes, performed similarly to uniform sampling across all
participants (p = .074), except for Participant 1, where it showed
a marginal advantage over spatial sampling (p < .05).

The relationship between sampling strategy and MAPE follows
a similar pattern. Uniform sampling generally resulted in higher
MAPE, particularly when fewer than 20 electrodes were sampled.
Spatial sampling provided the most consistent improvements, with
MAPE dropping below 20% at 20 electrodes and continuing to
decline as more electrodes were sampled. Adaptive sampling, while
promising in theory, did not consistently improve over spatial
sampling in this dataset.

These results indicate that structured spatial sampling is a
robust and effective method for threshold estimation, consistently
improving accuracy over random selection and performing at least
as well as adaptive sampling. While adaptive methods hold promise
for larger electrode arrays where uncertainty-based selection could
play a greater role, they did not provide a measurable advantage in
this dataset.

IV. DISCUSSION

In this study, we introduced a Gaussian process regression (GPR)
framework [17] to efficiently estimate perceptual thresholds across
retinal implant electrode arrays, reducing the number of required

measurements while maintaining high predictive accuracy. Our
findings demonstrate that spatially optimized sampling consistently
outperformed uniform random sampling, providing a structured
method for reducing patient burden without sacrificing accuracy.
While adaptive sampling, which prioritizes high-uncertainty re-
gions, showed promise, its improvements over spatial sampling
were not statistically significant in this dataset.

GPR effectively captured the spatial correlations in percep-
tual thresholds, allowing for accurate predictions at unsampled
locations. The Matérn kernel consistently outperformed the RBF
kernel, indicating that a model capable of handling sharp threshold
discontinuities is necessary for accurate interpolation across the
electrode array. This finding is consistent with the known variability
in perceptual thresholds [2], [6], which can exhibit both smooth
and abrupt spatial variations due to factors such as electrode-
neuron distance, local retinal health, axonal stimulation, and tissue-
electrode interactions [18], [19]. In addition, non-local activation
along ganglion axon pathways can lead to spatial distortions in
percepts [20], further motivating the need for flexible models
like GPR that can accommodate both local and extended spatial
correlations.

In terms of sampling strategy, spatially optimized sampling
proved to be the most robust approach, particularly when the
number of sampled electrodes was small. By ensuring an even
distribution of selected electrodes, this method minimized the
risk of overfitting to localized clusters and provided stable error
convergence. Adaptive sampling, while conceptually appealing, did
not significantly improve prediction accuracy over spatial sampling.
This suggests that, in a structured implant array with a moderate
number of electrodes (e.g., 60 in Argus II [12]), spatial sampling al-
ready provides an efficient and effective way to estimate thresholds.
However, adaptive sampling may still hold value in larger electrode
arrays where simple spatial spacing may not be sufficient to capture
localized threshold variations.

Despite these promising findings, some challenges remain. First,
while adaptive sampling did not outperform spatial sampling in our
dataset, it is possible that larger implants or more heterogeneous
threshold maps could reveal stronger benefits. In such cases, a
hybrid strategy (i.e., starting with spatial sampling and refining with
adaptive sampling) could provide the best of both worlds. Second,
GPR is ultimately limited by the reliability of perceptual reports,
which can be influenced by fatigue, attention, and intra-session
variability [4], [21], [22].

While this study focused on spatial correlations in perceptual
thresholds, future extensions could incorporate additional physio-
logical or anatomical factors to further enhance model accuracy.
Prior work has identified electrode impedance, retinal eccentricity,
and demographic factors (e.g., subject age, time since blindness
onset) as important predictors of threshold variability [7]. Such
features could be integrated into the GPR framework by expanding
the input space to include electrode-specific impedance measure-
ments, anatomical distances, or patient history, allowing the model
to learn both spatial and non-spatial correlations. Alternatively,
these factors could inform kernel design or serve as priors over
expected threshold distributions. Although integrating multimodal
data was beyond the scope of the present study, doing so offers a
principled, interpretable path toward more personalized and scalable
calibration strategies.

In conclusion, this study establishes GPR with a Matérn kernel
and spatial sampling as an effective approach for streamlining the
calibration process of retinal implants. While adaptive sampling
remains an intriguing avenue for future work, spatial sampling
alone was sufficient for efficient threshold estimation in the current
dataset. As next-generation prosthetic implants move toward higher
electrode densities [9]–[11], intelligent sampling strategies like
these will be essential for reducing patient burden and making
clinical calibration procedures more feasible.
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