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Abstract

Spiking neural networks (SNNs) circumvent the need for large scale

arithmetic using techniques inspired by biology. However, SNNs

are designed with fundamentally different algorithms from ANNs,

which have benefited from a rich history of theoretical advances

and an increasingly mature software stack. In this paper we ex-

plore the potential of a new technique that lies between these two

approaches, one that can leverage the software and system level

optimizations of ANNs while utilizing biologically inspired circuits

for energy efficient computation. The resulting hardware represents

the traditional weight of an ANN as nothing more than a delay

element and the degree of activation as nothing more than arrival

time of a digital signal. Building on these fundamental operations,

we can implement complete ANNs through several innovations:

spatial and temporal reuse that facilitates classical dataflows, reduc-

ing memory system demands for ANN temporal operations; a new

noise-tolerant temporal summation operation; novel hybrid digi-

tal/temporal memories; and the integration of temporal memory

circuits for shepherding inter-layer activations. Using the MLPerf

Tiny benchmark suite, we demonstrate how several architectural

parameters can impact inference accuracy, that our proposed sys-

tolic array can provide 11× better energy consumption with a 4×
improvement in latency compared to SNNs, and when equipped

with temporal memories provides 3.5× improvements in energy

compared to the most aggressive 8-bit digital systolic arrays.
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1 Introduction

Time is an inherent property of all physical actions, one that is

increasingly leveraged by designers. Devices that can sense, in-

teract, and make decisions about the physical world around them

are increasingly in demand [55], and one of the simplest ways to

perform these tasks is by utilizing their temporal dynamics. Analog
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sensors first convert their value to temporal wavefronts, then to

digital [67], while other sensors such as dynamic vision cameras

[22] and lidar [59] already produce outputs with information en-

coded in time. This motivates a simple question: can we leverage

these temporal dynamics without performing expensive time to

digital conversions (TDCs)? This becomes an increasingly pressing

question as we drive neural networks to energy constrained devices

to create systems that not only develop an understanding of the

world, but also make decisions based on that knowledge.

One approach for extracting these dynamics is spiking neural

networks(SNNs), which leverage neurons that extract spatial and

temporal patterns from a series of spikes occurring across time. This

is a seemingly completely different paradigm from ANNs (where

linear layers of multiply-accumulate operations are interspersed

with non-linear activation layers) and SNN’s bio-inspired nature

points towards the potential for incredibly energy efficient infer-

ence. The potential for energy efficiency comes largely from the

data representation, in which spikes are encoded as binary values

that facilitate lightweight, simple operations. However, this may

also come at the expense of accuracy [50], latency [25], and design

time [43]. Meanwhile, ANNs benefit from decades of research and

industrial efforts creating mature tools and techniques that have

shown to be effective across the computing stack, providing highly

effective networks in terms of both accuracy and performance. In

this work we propose a new approach that merges these seemingly

distinct forms of inference, which can leverage the sparse, temporal

coding of SNNs while still implementing the same algorithms un-

derlying ANNs to achieve new levels of energy efficient inference.

When coupled with traditional digital memories, this approach per-

forms well compared to the most efficient and custom-trained SNNs,

and when integrated with memristive temporal memories [37], will

even beat 8-bit digital logic in terms of energy efficiency without

any retraining or fine-tuning.

The key to our approach is the insight that we can encode each

activation of the ANNs into just a single “spike” in time, relying

on the temporal operations of “delay” and “real softmin” (opera-

tions that are both well defined and easily implementable on sets

of spikes) to compute the linear operations that dominate ANN

computation: multiplication and accumulation. Under this scheme,

weights are applied to input spikes by simply delaying their propa-

gation in time, as shown in Figure 1, which corresponds exactly to
multiplication. A large weight in the neural network corresponds,

very intuitively, with a small delay — with a zero weight equivalent

to an infinite delay. Summation, under the same transformation,
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Figure 1: An example of a dual rail delay space neuron, with multiplication replaced by delays, accumulation performed with

negative log sum exponential (nLSE) functions, and activation replaced by negative log sum difference (nLDE). The values on

the far left show the original input and weight values before the delay space conversion. Each intermediate signal’s delay space

value is indicated with 𝛿 , with earlier values appearing towards the right. Higher importance values have lower delay and are

thus first to arrive at downstream units. All weight delays are converted, quantized and stored digitally, with each weight’s sign

indicating whether to route the delayed value to a positive or negative rail (shown in red). Each value in the computation is

represented by a single “spike” represented as a rising edge on a wire.

becomes an efficiently computable function using the primitive

operations inherent to the temporal domain [35]. In this work we

show how several important functions for ANN inference can be im-

plemented using temporal primitives, creating a unified framework

for implementing ANNs using a single spike per activation.

As one attempts to apply this arithmetic at larger scales, two

new problems arise: a) prior methods of approximating real softmin

show some critical non-idealities leading to error accumulation and

b) internal digital memory becomes a greater and greater limiter.

To address the first problem, we propose a noise-tolerant approxi-

mation method that can recover the accuracy of the original ANN

through temporally interleaved min-term chaining. To address the

second, we show the potential of temporal memories — memristive

crossbars that have been demonstrated to capture and replay de-

layed signals — to bring the energy consumption below an 8-bit

digital ANN. The resulting systolic array relies on programmable

delay elements to provide a form of temporal quantization, while us-

ing temporal recurrence [10, 23] to maintain values in the temporal

domain, reducing the number of memory accesses and facilitating

classical dataflows. The specific contributions of this paper are:

• We describe how delay space arithmetic and approxima-

tions implement a spiking version of the linear operations in

ANNs, then demonstrate how this method can be extended

to efficiently implement ReLU and max-pooling.

• We are the first to evaluate how previously proposed delay

space approximations impact neural network accuracy, and

propose a new approximation methodology that provides

improved network accuracy and better noise resiliency.

• We propose a hybrid temporal/digital systolic array that

allows for weights to be loaded digitally, yet perform all

operations in the temporal domain. Then we analyze how

different architectural parameters impact network accuracy.

Importance Delay Space

x − ln(x) = x

w · x − ln(w · x) = − ln(w) + − ln(x) = w + x

x + y − ln(𝑒− ln(x) + 𝑒− ln(y) ) = − ln(𝑒x + 𝑒y) = nLSE(x, y)

x − y − ln(𝑒− ln(x) − 𝑒− ln(y) ) = − ln(𝑒x − 𝑒y) = nLDE(x, y)
Table 1: Traditional “importance space” operations and what

they correspond to in delay space. At any point a spike delay

of x from reference time can be interpreted as an importance

of x = 𝑒−x.

• We demonstrate how our systolic array can directly inte-

grate with temporal memory systems, creating a system that

consumes 3.5× less energy than a digital systolic array.

2 Neural Networks with Delay Space

SNNs attempt to model the relationship between presynaptic and

postsynaptic spikes in a way that is biologically plausible. This is

generally done with a leaky-integrate-and-fire model [9], which

integrates incoming spikes and fires after reaching an activation

threshold. These spiking models exhibit a variety of behaviors and

may be abstracted further based on how information is encoded into

the spikes — typically into one of two general categories, rate-coded

and temporal-coded.

Temporal coding has inspired a general, logically complete al-

gebra with four primary operations: min (first arrival), max (last

arrival), delay (addition of a constant), and inhibit [51]. These op-

erations have been shown to be incredibly energy-efficient when

each “spike” is encoded as the rising edge of a voltage [35], giving

each operation a simple logical equivalent (e.g. min corresponds to
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Figure 2: Graph showing the time of arrival and arithmetic

dependencies for temporal spikes with the same example

data from Figure 1. This additionally shows the constant

offset required by the nLSE operation.

an and). This temporal coding has been shown to be effective in de-

cision trees [56], but there remains a large gap between the current

capabilities of temporal computing and modern neural networks.

Delay space arithmetic [23] is based on this logically complete

algebra, but relies on a negative natural log of the numbers and

operations. Since the logarithmic function is undefined for negative

numbers it necessitates a dual rail encoding to represent the com-

plete number line. A value x is split and becomes x
pos, xneg, where

x
pos − x

neg = x, max(xpos, xneg) = |x|, and min(xpos, xneg) = 0.

This pos/neg split cannot be directly converted to delay space, as

one will always be zero, and the log of zero is undefined. To sim-

plify the transition we define the delay space equivalent of zero to

be infinity instead of undefined. Infinity in temporal coding is the

same as a wire that never transitions from low to high. This means

one of xpos or xneg will always be an inactive wire.

This transformation creates a natural fit for the four primary

operations of temporal computing. Table 1 details how standard

arithmetic, or "importance space", operations become transformed

in the new negative log domain. Multiplication in importance space

becomes addition in delay space, which can be implemented tempo-

rally with a simple delay. This is shown on the first functional block

on the left side of Figure 1. With an assumption of positive only

inputs (which we discuss in Section 2.1), this delay only needs to be

coupled with a router to a positive or negative rail, depending on

the sign of the weight. Next, addition in importance space becomes

the negative log sum exponential (nLSE) function. This function,

known as real-soft min can be approximated by a min-of-maxes ap-

proach, efficiently implemented using delays and basic logic gates,

shown in Figure 3. The key technique that allows this to work is

adding a constant offset to the result of the computation to avoid

having to trigger an event before any inputs arrive, demonstrated

in Figure 2. This accumulation in a dual rail system is shown as the

middle functional block of Figure 1.

The result of this multiplication and accumulation will be main-

tained with two rails, as the negative and positive rails cannot be

accumulated using the same function. However, these two rails both

carry a value, breaking our original definition of dual rail coding. In

importance space a simple subtraction can normalize these values,

which gets transformed in the negative log domain to negative log

difference exponential (nLDE). nLDE can be approximated using a

min-of-inhibits, similar to the nLSE approximation. However, this

function, like the original negative log transformation, is undefined

for negative values. Instead it must be applied twice, with the inputs

reversed:

𝑦pos = 𝑛𝐿𝐷𝐸 (𝑥pos, 𝑥neg)
𝑦neg = 𝑛𝐿𝐷𝐸 (𝑥neg, 𝑥pos)

The approximation returns∞when nLDE is undefined, so the result

of these two operations will always adhere to the original definition

of the dual rail coding. In order to maintain this strict dual rail

definition this normalization must be applied after every operation.

However, the associative nature of the preceding linear operations

(additions and multiplication) apply to their log transformation

(nLSE and addition), so the nLDE only needs to be applied before

non-linear operations.

These three transformed operations (delay, nLSE, and nLDE)

exactly implement the linear operations within neural networks.

2.1 Non-Linear Temporal Operations

Unlike prior work, we show this framework can be extended to

several other operations to support the non-linear activations nec-

essary for ANNs, an integral part of neural networks. The first

important operation for energy-efficient neural networks is ReLU,

where only positive values are passed through and all negative

values become zero. In delay space this zero becomes infinity, or a

wire that never triggers. Therefore, to implement ReLU, only the

positive rail of the previous computation needs to be calculated.

Due to the inhibit function used in the nLDE approximation, the

required infinity is the natural result when the result would be

negative in importance space. This makes the min-of-inhibits ap-

proximation a natural fit, as digital implementations of nLDE would

return undefined or NaN.

The second operation necessary in many convolutional neural

networks (CNNs) is max-pooling. If one of the values in the max-

pool operation is positive, then a simple min of the positive rails can

implement max-pooling. This max to min conversion stems from

the negative log transform, where larger values in importance space

are transformed to smaller delays in delay space. Alternatively, if

none of the values are positive, then a max of the negative rails is

used. This can be simplified to:

𝑦pos = min(𝑥pos
0

, ..., 𝑥
pos

𝑛 )
𝑦neg = max(𝑥neg

0
, ..., 𝑥

neg

𝑛 )

The simplification of this logic works because any positive value

will have an infinite negative rail, causing the max of all negative

values to never trigger. For networks where ReLU is combined

with max pooling, the operation becomes even more simple. The

only relevant information is the positive rail and is performed

simply with a min operation. These two operations are sufficient

to implement many neural networks [3], and pre-trained networks

can easily be converted to delay space by simply transforming

all inputs and weights to delay space values. For the weights of

a network, this represents a one-time cost that can be performed

before loading them onto the system. For the inputs, this step can

918



ISCA ’25, June 21–25, 2025, Tokyo, Japan Rhys Gretsch, Michael Beyeler, Jeremy Lau, and Timothy Sherwood

Delay

Delay

X

Y
Delay

Delay

Original 
Approx 
Circuit

Inverse 
Approx

Temporal Average
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be co-located with the input pre-processing, and only needs to be

performed once before the network begins, representing a tiny

fraction of the overall computational demand of the network.

2.2 Noise Resilience

We’ve shown that we can algorithmically merge ANNs with tem-

poral computation, however, while temporal computation relies on

digital tools and building blocks, the domain is inherently noisy.

Further, the log transformation that enables temporal arithmetic

introduces logarithmic bias, where balanced error and noise in de-

lay space become skewed in importance space. In Section 6.1, we

show how this degradation requires significant area and timing

overheads when naively applying delay space approximations to

neural networks. To reduce the impact of both the noisy temporal

operations and the approximation bias, we discuss two techniques.

First, we propose a novel, circuit level optimization of the nLSE

approximation that reduces logarithmic bias while simultaneously

being more resilient to noise. Then, we discuss how standard regu-

larization techniques create networks that are more robust to the

types of noise introduced by our temporal networks.

Improved approximations: Approximations of delay space

addition (nLSE) rely on a min-of-maxes approach, where every max-

term creates a deformation, or “valley”, in the original min function.

These valleys create lines with positive and negative unit slopes,

and careful placement of these valleys allows for the non-linear

function nLSE to be approximated. Additionally, this approach only

needs to approximate half of the function’s range by operating on

the difference between the inputs and adding the results to the

minimum input. This is a common trick when computing real soft

min and max, and can be implemented in hardware using a simple

temporal routing scheme shown on the left side of Figure 3. This

changes the function being approximated to nLSE(0,max(𝑥,𝑦) −
min(𝑥,𝑦)), which is shown as the black line in Figure 4.

The red line in Figure 4 shows a 7-term approximation using the

same optimization method as [23] to place each valley. This method

attempts to minimize the distance between the approximation and

the original function by balancing the area above and below the

original curve. However, as we show in Section 6.1, this approach

struggles to fully recover the accuracy of convolutional neural

networks. This is largely because error that’s balanced in log space

becomes unbalanced when converted back to importance space,

introducing an inherent bias to the approximations.

Our proposed solution to this bias relies on creating an equal,

but complementary approximation to the original, shown in Figure

4 as the blue line. This approximation uses the same optimization

framework as the prior work [23], but starts the solver using a

valley instead of a peak. Taking the average of these two approxi-

mations provides a near-exact copy of the original nLSE function.

Unfortunately, implementing an exact temporal average would

require analog circuitry, preventing the temporal logic from be-

ing implemented with purely digital building blocks. Instead, an

approximate averaging circuit can be built by characterizing the

differences between the approximations.

This approximate average circuit is developed by using the de-

lay space equivalent to the average of two values:
x+y
2

becomes

nLSE(x, y) + ln 2. This allows the same nLSE approximation tech-

nique to be used, with all constants shifted by ln 2. However, the

characterization of the two inverse approximations provides a tight

bound on the difference between the approximations at any given

point along the curve. Now only a small portion of the function’s

curve needs to be approximated, allowing an acceptable approxi-

mation with minimal additional delay and gates.

This combined approximation, shown in Figure 3, creates a better

piecewise approximation of the original nLSE function, providing

better accuracy than the original approach. Temporally combined

approximations additionally provide redundancy, allowing the re-

sulting value to be less sensitive to noise along either of the lines.

Neural Network Regularization: Regularization is commonly

used when training neural networks to prevent over-fitting. There’s

a broad range of techniques, weight decay [29], noisy layers [6], and

dropout [52], which attempt to prevent networks from becoming

overly reliant on certain features of the input data. We show in Sec-

tion 6.1 how networks trained with regularization are much more

robust to the error introduced by our temporal networks, particu-

larly when combined with our improved approximation. While this

must be applied at training time, it requires minimal modification

to the training stack and most networks already include some form

of regularization.

919



Single Spike Artificial Neural Networks ISCA ’25, June 21–25, 2025, Tokyo, Japan

Input Feature M
ap

Weights Feature Map

Output Feature Map

TDC

DTC

PEPE PEPE PEPE PEPE

nLDE

PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE

DTC

DTC

nLDE nLDE nLDE

TDCTDCTDC

Figure 5: Architecture of the hybrid temporal/digital systolic

array where all memory is digital, so accesses to the input

and output feature maps require temporal conversions, ei-

ther temporal to digital (TDC) or digital to temporal (DTC).

The DTC is placed in the middle of the array to balance the

broadcast path to each PE.

3 A Temporal/Digital Systolic Architecture

While the proposed techniques shown in Section 2 demonstrate

how artificial neural networks can be mapped to a temporal equiv-

alent, prior implementations of temporal logic have either been

fixed function [23, 35] or application specific [56]. This represents

a significant gap between our proposed delay space networks and

both ANNs and SNNs, as the ability to program new weights and

biases is at the heart of these accelerators. To bridge this gap, we

propose a novel hybrid temporal/digital systolic array to support

the general class of delay space networks shown in Figure 5. Due to

the algorithmic equivalence to ANNs, this systolic array leverages

many of the same patterns as digital systolic arrays, exploiting

reuse wherever possible and only falling back to digital when nec-

essary. However, the transient nature of temporal computation

makes many digital approaches to achieving these reuse patterns

ineffective, as they require numerous domain conversions, which

counteract the benefits of delay-space computation.

3.1 General and Programmable Operation

Programmable neural network accelerators begin with the ability to

program weights, typically from memory into a register, which can

be directly manipulated by logic. However, our transformedweights

are encoded as delays, necessitating a circuit or device that has a

variable propagation speed based on some external, programmable

input. Several programmable delays have been proposed, including

starved inverters [60], memristors [37], and pull-down networks

[39]. These generally work by artificially increasing the resistance

and capacitance within a single device or gate, attempting to cre-

ate a linear relationship between the programming signal and the

corresponding delay. Starved inverters and memristors can achieve

this linearity, but are controlled through analog signals: steady

state voltages and voltage pulses respectively, which would require

another domain conversion step. Pull-down networks are digitally

programmable, but offer a narrow range and high delay variability

[38].

As an alternative, we use a cascading inverter approach [13],

where each bit programs a mux that selects between a delay path

and an immediate path, as shown in Figure 6a. Each mux controls a

delay path that is twice as long as the previous stage, providing 2
𝑛

delay paths. This leverages the fact that delay circuits use the same

binary wires as digital logic, allowing digital control to direct and

route temporal paths. However, this does limit the possible number

of delay paths, forcing a fixed-point quantization.

Quantization, a technique that reduces the bit-precision of oper-

ations [42], is quintessential to most neural network accelerators,

leveraging ANN’s tolerance to error. However, due to the low dy-

namic range of these quantized values, it’s often necessary to use

scaling values to maintain network accuracy [63]. This introduces

multiplication and rounding overheads that are typically a small

fraction of the energy saved, but require additional, higher preci-

sion hardware units. Delay space quantization must use a similar

scaling scheme, partially to ensure all temporal values are positive.

However, since delay space networks use a log number system, the

multiplicative scaling can be simplified to addition. Additionally,

the log number system allows for a wider dynamic range than an

equivalent number of bits in a linear system, and is thus a promising

candidate for many neural network applications [40, 68]

While a programmable delay is sufficient to create a general

purpose architecture, without leveraging reuse, both spatially and

temporally, the memory system will dominate the energy consump-

tion of the system. Typically, when inputs are read from SRAM,

classical architectures exploit spatial reuse through a store-and-

forward method [47], allowing values to be used by processing

elements (PEs) across space and time. However, this technique re-

lies on registers, a structure that doesn’t have a clear temporal

equivalent. As we show in Section 3.3, memristive temporal memo-

ries could potentially act as a register, but the control logic makes

it inefficient to implement as standalone devices inside the systolic

array. Alternatively, the temporal signal can be converted to digital,

stored in a register, then replayed on the next cycle. However, this

domain conversion, particularly TDCs, is both area and energy

intensive, and should be minimized wherever possible. Instead, we

broadcast the temporal signals to all the PEs within a row to achieve

the same level of spatial reuse as the store-and-forward approach.

This broadcast can be achieved by placing the DTC physically in

the center of the array. From the DTC, a branching routing scheme

can be used to ensure that each PE receives the signal at the same

time, similar to clock network H-trees [64].

After each PE’s outputs are generated, most systolic arrays ex-

ploit temporal reuse by storing and replaying the result across

subsequent cycles. However, the output of our delay space multiply

and accumulate (MAC) unit is inherently temporal and again, can-

not be stored effectively as-is. It could be immediately converted to

digital, similar to methods used by other hybrid domain accelera-

tors [62], but this conversion is expensive and doubles the energy

consumed by each PE. Instead, we propose maintaining the tempo-

ral outputs by resynchronizing them with the next cycle’s incoming

data using temporal recurrence [10, 23].
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Figure 6: a) The delay space MAC, equipped with a digitally

programmable delay element. b) Paired nLDE-TDC readout

with the automatically generated negative flag.

This works by delaying the output of the signal so that it has

the same scale as the next input, synchronizing the two signals. For

instance, if two delay space values x and y arrive across two con-

secutive cycles, the actual arrival times are 𝑡𝑥 and 𝑡𝑦 +𝑇 where𝑇 is

the cycle time. However, addition in time is the same as importance

space multiplication, so the +𝑇 term acts as a scaling factor. To

operate on the two values, the same scaling factor must be applied

to both, which can be accomplished by delaying x by the cycle time.

Also, it’s important that any operations performed this way must

be distributive so that 𝑓 (𝑥 +𝑇,𝑦 +𝑇 ) = 𝑓 (𝑥,𝑦) +𝑇 , a requirement

met by all delay space operations. While this does require delay

to perform the synchronization, it can be combined with the delay

inherent to the nLSE approximation. Since this approximation is

along the critical path, minimal additional hardware is necessary

to support recurrence.

This resynchronization along with temporal broadcasting ex-

ploits spatial and temporal reuse in systolic arrays, allowing the

delay space spikes to leverage many of the same systems set up

for ANNs. This reuse, alongside the digitally programmable delay

elements, creates a general purpose architecture that can map all

of the linear layers of a delay space network, and by extension all

of the linear layers of an ANN.

3.2 Error Minimization through Temporal Logic

Trees

In digital logic, floating point values suffer from an accumulation

of errors as more computation is performed [28], and the shape of

the computation has a large impact. A tree based reduction of com-

puting floating point values has much less error than a pure linear

reduction approach. This same phenomenon is compounded in the

delay space approximations, where error minimization is critical

due to the log-compressed nature of delay space. This is caused by

two reasons, stemming from the approximation technique. First,

nLSE with a larger input difference than the range of approximation
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Figure 7: Two possible types of PE tree sizes, balanced and

unbalanced (left) and their corresponding execution of an

importance space set of data (right). We highlight the areas

where the approximation is perfect with the dotted green

boxes, and the maximum difference that needs to be approx-

imated in the solid boxes. This max difference exemplifies

how the PE structure impacts the nLSE input distribution

that needs to be approximated.

becomes the min operation. This does not introduce much error

in isolation, but a linear reduction creates a very small value in

delay space. Since the reduction cannot include negative numbers,

this value eventually becomes much smaller than the original input

domain. At this point, every nLSE becomes min, losing all infor-

mation that would be provided by additional accumulations. The

second impact comes with the uneven accuracy of the approxima-

tion. Certain points along the approximation curve are closer to the

true nLSE function than others, and so the accuracy is dependent

on the absolute difference of the two inputs. This distribution of

inputs changes as the reduction changes from linear to tree based,

which we explore in Section 6.1.

In digital systolic arrays, the parallel nature of data representa-

tion constrains PEs to accept only one input, one filter, and one

intermediate value per cycle [12, 27], resulting in a fully linear

reduction. However, multi-input PEs have been shown in unary

computing systems [61] and aggressively quantized systems [4]

because both the required bandwidth and wire congestion is signifi-

cantly reduced. This same approach can be used with our proposed

array as shown in Figure 7.

Because the delay space nLSE approximations are designed for

approximating a two-input function, a hardware tree must be used

to fully reduce all of the incoming values. For maximum accuracy a

tree large enough to accept all of the values in parallel would be used,

but the large number of input values per neuron in neural networks

makes this infeasible. Instead, the tree size is fixed and the values are

folded across time, creating a semi-serialized reduction approach.

If the reduction tree is fully balanced, then no extra hardware is

required, but an unbalanced tree requires extra synchronization

lines due to the constant offset introduced by each stage in the

nLSE tree. Also, the PE tree size creates a new trade-off between
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performance, energy, and accuracy. The larger the depth of the tree,

the longer each cycle takes while requiring more memory accesses

to ensure the PE is fully utilized. We explore these tradeoffs in

Section 6.

3.3 Temporal Memory

While our proposed array up until this point shows how tominimize

TDCs and DTCs, these conversions are still necessary to interact

with memory, a classically digital structure. However, recently there

have been large strides in creatingmemory systems that can capture

timing of wave fronts, which can then be recalled on demand [37, 44,

45, 57]. These typically rely on memristive[53] devices, which have

a programmable resistance based on the duration of a write pulse,

leading to a direct relationship between the physical characteristic

(resistance) and time.

Programming these devices requires a temporal signal and a

reference signal, which can be directly generated by the clock. The

memristor is connected in parallel with a transistor between the

word line (the reference signal) and the bit line (the temporal signal).

The transistor is then programmed by a select line that determines

whether that specific device is being activated. When a device is

selected for a write operation, the transistor is turned on, and when

the reference signal goes high it creates a voltage difference across

the memristor, which in turn causes the device’s internal resistance

to increase. Once the temporal signal arrives, the voltage difference

becomes zero, preventing any more changes to the memristors state.

As long as the difference between the reference and temporal signal

is less than 40ns, which delay space operates within, this change in

resistance is linear.

During a read the word line goes high at a lower voltage (to

prevent modifying the memristor’s state), which causes current to

flow across the memristor, charging a capacitor along the bitline.

This capacitor can be connected to a gate that goes high once the

voltage across the capacitor reaches a certain threshold. The time it

takes to reach this threshold is linearly related to the resistance of

the capacitor, causing the output pulse to be linearly related to the

time between the reference pulse and the original programming

signal. Using additional capacitors, this signal can create a one-to-

one mapping of the programming and read signals. Although this

operation introduces inherent delay, it is equivalent to a constant

input reference shift.

This represents slightly more complex control circuitry than

classical SRAMs, but its advantages far outweigh the cost. The

input and output feature maps can be completely replaced with

their temporal equivalent, totally removing the need for any TDCs

or DTCs within the array. Additionally, a single device maintains a

full value instead of 8 SRAM cells needed for every activation. This

allows for a significant reduction in read/write parasitics, causing

the memristive operations to dominate the energy consumption.

While this is more expensive than a typical memory cell access, it

still provides significant savings over it digital counterpart, as we

analyze in section 6.2.

Precision of recall is the largest barrier to using this temporal

memory. While this represents a challenge, memristive fabrication

consistency has improved significantly, with device to device vari-

ability reaching less than 1% [30] and cycle to cycle variability small

enough for 7 bits of precision [34] with current technologies. As

memristor technology matures this variability will decrease, allow-

ing for better distinction of stored wavefronts. While the variability

will never completely go away, it will serve as a form of quantiza-

tion, introducing error in a similar manner to the error introduced

by temporal activations being quantized as they’re stored digitally.

4 Dataflow for Temporal Operation

While Section 3.1 shows how reuse can be exploited at the micro-

architectural level, it is well known that how this reuse is structured

at the global level has a large impact on the energy of the full system

for both ANNs and SNNs due to the orders of magnitude difference

between the cost of a MAC and a memory access. ANNs must

balance folding their inputs, weights and outputs across the systolic

array and network layers, but SNNs typically have to balance all of

these things across time as well [66]. This extra dimension increases

the dataflow complexity and design space possibilities.

In general, because delay space performs the same operations

as ANNs the array can leverage the simplicity of ANN dataflows.

However, the spatial and temporal local reuse exploited by our

architecture is based on the temporal values, which establishes

limitations that prevent some dataflows. For example, dataflows

that require inputs to be passed diagonally across the array are no

longer effective because of the input broadcasting.

Also, many accelerators co-locate PEs with small scratchpads to

maintain multiple sets of intermediate data to maximize utilization

and reuse[33]. However, the recurrence that facilitates temporal

reuse in our architecture incur increasing energy and noise as

multiple cycle delays are required, making the flexible designs

built on scratchpads impossible. Instead simpler data flows must

be considered, like those used in systolic arrays that only allow for

neighbor-to-neighbor communication. These data flows fall into

three categories: weight stationary (WS), output stationary (OS),

and input stationary (IS), and have been shown to be very effective

[27].

IS requires that after each input arrives at a PE it is stored and re-

used every cycle in the same PE. Again, the temporal inputs to our

systolic array make this challenging. The input could be delayed to

re-synchronize with the next cycle to maintain the temporal repre-

sentation as discussed in Section 3. However, the value that must be

delayed is unaffected by the computation, so none of the recurrence

delay is hidden by the computational delay. Instead there must be

a long delay line to offset the signal by an entire cycle, consuming

additional area and energy. Because of the incompatibility with the

hybrid array we ignore IS and instead discuss how both WS and

OS can be implemented using the array.

Implementing a WS dataflow is straightforward because the

weights in the systolic array are fully digital. The programmable

delay of each PE is latched to the incoming weight value and does

not change until that weight has interacted with all necessary

inputs. The temporal output of each PE is routed along the same

column to the next PE where it is delayed to be synchronized with

the input of the next cycle. This output is not being passed back

into the same PE, no longer implementing recurrence. Instead, the

same synchronization technique implements a temporal pipeline.
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The OS approach only needs one PE to compute a single output

pixel/value, while the necessary weights and inputs are streamed

through the PE. The temporal result of each PE is synchronized

with the next set of inputs, then fed back into the same PE that

it came from, implementing recurrence exactly. Once the entire

output is calculated, the temporal result is sent to be stored digitally.

This output has been fully computed so only the activation func-

tion needs to be computed. For ReLU this means that half of the

normalization nLDE circuits shown in Figure 6b can be removed,

as only the positive rail is taken into account.

When considering a design that leverages temporal memories,

the input and output feature maps are smaller and more energy

efficient, while the weight feature map is still implemented digitally.

Since this consumes much more energy per access compared to the

other memories it’s wise to try and minimize this access. Therefore,

for the rest of this paper we leverage a WS dataflow to fully take

advantage of the temporal memories. While this approach more

frequently leverages the nLDEs at the interface to the memory, it’s

more than offset by the energy efficiency gained by the cheaper

access. Additionally, this periodic partial sum normalization can

prevent recurring values from growing too large (fast) compared

to the input signals.

5 Evaluation Framework

We used three different frameworks to evaluate our proposed sys-

tem. First, to evaluate the accuracy of delay space neural networks

we created a simulation framework based on TensorFlow[2]. This

approach takes a pre-trained neural network and dataset, then con-

verts all of the weights and inputs into delay space values. Next,

it takes each layer and modifies the layer so that all calculations

performed are replaced with their delay space equivalent (e.g., mul-

tiplication becomes addition and addition becomes our nLSE ap-

proximation). We add an option to perform these operations with

noise based on prior analysis [41]. Generally noise comes from

three sources: process, voltage and temperature (PVT). Process

variation is correlated across large parts of the chip, which acts as

a constant shift to all temporal operations. Since our operations

are all shift invariant, this variation has minimal impact on the

result of the computation [13]. For temperature, or random jitter

(RJ) we model delay elements with independent Gaussian noise,

so the noise grows at a reduced rate as the number of delay ele-

ments increase. Our voltage variation model assumes a distribution

where the limits are determined by the potential swing in supply

voltage. This model assumes a worst case scenario where voltage

variation is correlated within a delay line, but uncorrelated across

both space and time, so every operation is exposed to potentially

maximum noise. Power supply jitter would normally impact the

array globally, exposing all circuits within a cycle to the same shift,

causing impacts to only appear over time. However, this models

a rapidly changing power supply to provide an extreme limit on

power supply impact.

Next, to evaluate the energy efficiency, performance, and area

of the delay space computations we use a 32nm technology model

[69] to determine the energy consumption of the delay elements

and basic operations in SPICE, using a 700mV supply voltage. We

then use an analytical model to extend these values to determine

the energy consumption of the delay space operations for a given

unit scale, which determines how theoretical delay space values

get mapped to physical timings (the unit scale is the physical delay

that is interpreted as the value 1). For the TDC and DTC we use our

SPICE modeling values and values from a simulated Vernier delay

line [18]. To evaluate the energy efficiency of the full system we

modify SCALE-Sim [46, 47], a systolic array architectural analysis

tool. SCALE-Sim was modified to support the broadcast inputs of

our proposed system and the multi-input PEs. This tool provides

memory usage statistics, which we use in conjunction with Cacti 7.0

[7] to model the energy and area consumption of the digital mem-

ory systems. To evaluate our array in conjunction with temporal

memory we rely on a 32nm RRAM process in NVSim [19], including

the additional overheads of temporal reads and writes [37]. For the

temporal memories analysis we include the TDC and DTC cost of

all off-chip accesses that must interact with the temporal memories.

To evaluate our design we use the MLPerf Tiny benchmark

suite[8], which provides neural networks for edge applications

where ultra-low energy inference is necessary. In order to evaluate

the impact of quantization on network accuracy we use a scale

quantization method [26, 63] with no fine-tuning for the baseline

importance space model, and use a transformed version of the

same scheme for the delay space quantization. For a baseline and

comparison we consider a digital systolic array and SATA, a state of

the art spiking neural network accelerator[66]. The digital design

is evaluated with computing units synthesized in Synopsys Design

Compiler at 400MHz using a 45nm tech node [61], and SATA-sim

to evaluate the SATA architecture. For both baselines we use tech

node scaling [48] to scale both results to 32nm to ensure a fair

comparison.

6 Results

6.1 Hardware Impact on Accuracy

The configuration of the hardware in the delay space framework

has a significant impact on the accuracy of the transformed neu-

ral network, so it is important to understand how the different

hardware parameters can impact the performance of the neural

network.

The hardware parameter that has the largest impact on neural

network accuracy is the number of approximation terms, and in

Figure 8 we show how the number of max-terms for nLSE approxi-

mation impacts the accuracy of the MLPerf Tiny benchmarks. For

each of these graphs we fix the number of inhibit-terms for the

nLDE approximation to 25, which we’ve experimentally determined

to give sufficient network accuracy. The 𝑥-axis shows the number

of approximation terms, while the 𝑦-axis shows the performance

metric. We show two networks for each application, one trained

with dropout for regularization and one trained without dropout.

We also compare against our proposed approximation and prior

approximations. For comparison, we count our proposed approxi-

mation to have the same number of terms as two times the original

approximation (e.g a 2×7 term approximation appears on the graph

as 14 approximation terms). In addition, each graph has two lines

that indicate the original network’s accuracy and the performance

target set by the MLPerf Tiny benchmark.
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In the original model, trained without dropout, our proposed

approximation method has better accuracy for any given num-

ber of terms, with the exception of low-term approximations of

anomaly detection. For the visual wake word and keyword spotting

benchmarks, a 2×3 term approximation is sufficient to reach the

performance target, while the original approximation approach

requires 15 terms to achieve the same target. This improvement is

exemplified even further when applied to the regularized models.

For the two networks already robust to noise, the original accu-

racy can be almost fully recovered with 2×5 terms, and 2×7 terms

is sufficient to hit the performance target for every benchmark.

While the original approximations see similar improvements from

the use of regularization, it still takes 25 terms to reach the image

recognition performance target.

However, this analysis assumes these approximations can be

implemented perfectly in hardware, with full precision. Both quan-

tization and hardware based noise will impact the final accuracy

of the network, and need to be considered. To examine this im-

pact we apply the noise models discussed in Section 5 to an 8-bit

ResNet8 (the MLPerf Tiny image recognition network) trained with

dropout. The results of the noise analysis on a 2×12 and 25 nLSE

approximation term system are shown in Figure 9.

First we examine the impact of random jitter (RJ) on accuracy

without voltage variation, shown by the blue curve and 𝑥-axis, as RJ

is largely based on the device physics and can only be controlled by

increasing the unit scale, which in turn increases the computation

time. At large unit scales the accuracy degradation is minimal,

and similar regardless of which approximation method is used.

However, as the unit scale reaches 1ns and shorter, our proposed

approximation accuracy decreases less than the original, staying

above the performance target with a 750ps unit scale.

We then perform an experiment that considers both RJ and

voltage variation, assuming a base 1ns unit scale for RJ. Voltage

variation is swept, parameterized by the potential voltage swing

as a percentage of the original supply, and shown in the red lines

of Figure 9. This demonstrates how voltage based noise can have a

much larger impact on network accuracy. However, as discussed in

Section 5, this is assumes a system much noisier than any realistic

hardware, with potentially maximal variation occurring multiple

times every cycle. The primary takeaway is our improved approxi-

mation is less impacted by noise, even under extreme conditions.

These two experiments show at a circuit and logic level how

the approximations can impact neural networks, but architectural

design decisions also impact the overall accuracy, as discussed in

Section 3.2. In Table 2 we show how 4 different PE tree config-

urations can impact accuracy (𝑛-tree indicates a PE tree with 𝑛

inputs), assuming a 2×12 nLSE approximation terms. We consider

3 balanced tree configurations, and one unbalanced configuration

(9-tree).

While most of the benchmarks have minor accuracy fluctuations

with changing PE tree sizes, anomaly detection degrades drastically.

While the performance can be recovered with a large, unbalanced

tree, balanced PEs have much worse accuracy. The reason for this

degradation is shown in Figure 10, displaying how the approxima-

tion input distribution changes drastically with the tree size. When

anomaly detection uses balanced tree PEs, it creates a much larger

spread of possible input values than image recognition, exemplified

60
65
70
75
80
85

Ac
cu

ra
cy

 (%
)

76

78

80

82

84

86

Ac
cu

ra
cy

 (%
)

89

90

91

92

Ac
cu

ra
cy

 (%
)

6 8 10 12 14 16 18 20 22 24
Approximation Max-Terms

0.5

0.6

0.7

0.8

0.9

AU
C

Im
age Recognition

Visual W
ake W

ord
Keyw

ord Spotting
Anom

aly D
etection

Original network
MLPerf Target
Optimized Approx
Original Approx
Opt. Approx w/Regularization
Orig. Approx w/Regularization

Approximation Accuracy Analysis

Figure 8: Network accuracy impact of the original delay space

approximations (Single Approximation) and our optimized

approximations (Dual Approximations) (10 max-terms for

the original approximation correspond with 2×5 terms for

our proposed optimized approximation). The number of

inhibit-terms for delay space subtraction is kept constant

at 25 terms for each network. We show the converted net-

work accuracy both when the original network is trained

with and without regularization. The top horizontal dashed

line represents the original ANN accuracy, while the purple

line represents the minimum performance required by the

MLPerf guidelines.

Table 2: MLPerf Tiny benchmark accuracy as the PE tree size

is swept, including one unbalanced tree configuration.

9 Tree 8 Tree 4 Tree 2 Tree

Image Recognition 86.36% 85.72% 86.41% 85.65%

Visual Wake Word 86.57% 86.42% 86.65% 86.44%

Keyword Spotting 92.04% 92.72% 91.35% 91.21%

Anomaly Detection .857 .48 .47 .46
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Figure 10: Histograms of the nLSE approximation input val-

ues for the image recognition and anomaly detection bench-

marks as the PE tree size is changed.

by the differences in the 2 tree PE histograms and the wide flat

region that occurs in the 8 tree. The approximation is the most ac-

curate as values are close to one another, and less accurate as they

move further apart, so this larger spread means more operations

are being approximated poorly. Using a 9 tree PE anomaly detec-

tion moves the distribution significantly closer together, where the

approximation is better, allowing it to recover the accuracy of a

full-tree implementation.

It may be possible to tune the placement of the approximation

terms to be better suited for the larger range present in anomaly

detection, but this would result in worse performance for the other

benchmarks. In the pursuit of a generally applicable delay space

systolic array we optimize for the common case. However, this

does mean some applications and networks may not be suitable

for this approach. This histogram analysis can be easily used to

determine if a new network will performwell on a given accelerator

architecture.

Arch.

Image

Recognition

Mobile-

net

Keyword

Spotting

Anomaly

Detection

DS DM 1.04 2.33 0.49 0.16

DS TM Tiny 1.87 3.32 0.68 0.34

SATA 5.14 8.5 3.5 0.66

Digital 0.26 0.45 0.09 0.05

Table 3: Inference latency (in𝑚𝑠) of the delay space systolic

array compared to the SATA SNN architecture and a digital

systolic array.

6.2 Architectural Analysis

Using the evaluation methodology discussed in Section 5 we per-

form a design space exploration for two of the MLPerf Tiny bench-

marks for both digital and temporal memory systems, shown in

Figure 11. Our design space exploration varies the height and width

of the systolic array, along with the size of each processing element.

We fix the input buffer, output buffer and filter map to 32KB, and

use 2×12 and 25 approximation terms for nLSE and nLDE respec-

tively with a 1ns temporal mapping. Each network is quantized to 8

bits and use a WS dataflow. We show the area of the systolic array

on the 𝑦-axis, while the 𝑥-axis shows the energy delay product

(EDP) of the systolic array and on-chip memory, excluding leakage

power. For this design space exploration we only consider archi-

tectures that have a smaller physical footprint than an 8 bit 12×14
digital systolic array, showing how a single delay space MAC unit

is significantly smaller than a digital multiplier.

While the fundamental MAC unit is small, the nLDE and TDC

are quite large, limiting the maximum possible width for designs

that meet the area constraint when using the digital memory sys-

tem. Because of this limit, the exploration reveals that for edge

inference tasks, narrow (smaller broadcasts) and tall (more IF map

bandwidth) designs tend to provide better EDP with a smaller foot-

print, with most Pareto optimal designs having a width between

7 and 9 PEs. Conversely, the temporal memory system can have

wider arrays because the expensive TDCs are no longer necessary,

creating many 2-tree designs along the Pareto optimal frontier. Ad-

ditionally, the visual wake word application benefits greatly from

2-tree designs, while for all other benchmarks and designs the 4-tree

designs perform better.

Using this analysis we select 3 designs that are generally along

the Pareto optimal frontier. We select a 9×8 array with a 4-tree PE

from both designs to highlight the benefits of temporal memory,

referred to as DS DM (digital memory) and DS TM (temporal mem-

ory) for comparison against other systolic arrays. We also select a

temporal memory design that is less than half the size of a digital

array as another comparison point, referred to as DS TM Tiny.

We then compare these designs to an 8-bit 12×14 digital systolic
array, a common edge inference configuration [12], and SATA, a

SNN accelerator. We evaluate SATA using SATA-sim, and assume

each benchmark is implemented with 20 time steps, a conservative

estimate as most direct ANN-to-SNN networks use 32 to 1000 time

steps [25]. For both designs we assume the same DRAM config-

uration as our design space exploration, then show the on-chip

inference energy consumption of the architectures for each bench-

mark in Figure 12. We show the latency for a single inference in
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ray sizes, comparing the overall area to the EDP. 3 designs are

highlighted across the benchmarks with a star corresponding

to DS DM, DS TM and DS TM Tiny.
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Figure 12: Active Energy comparison between our proposed

delay space systolic array, an 8-bit digital implementation

and an SNN systolic array, SATA [66].

Table 3, excluding DS TM since it has roughly the same performance

as DS DM.

Compared to SATA, our hybrid systolic array performs much

better, even when using digital memories. DS DM achieves an 11×
improvement in energy efficiency over SATA for keyword spotting,

while performing 4.5× better for image recognition. This also comes

with significant speedups over the SNN approach, saving over 0.5 to

6ms across the benchmark tasks. These results show the currently

attainable benefits of our unified spiking ANN approach, leveraging

classical dataflows for significant energy efficiency over methods

leveraging temporal dynamics. While it has been shown that SNNs

can leverage fewer time steps when utilizing advanced retraining

schemes, DS DM still provides at least 2× energy improvement for
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Figure 13: Analysis of broadcast noise as the width of the

array scales.

each benchmark over a 6-step network on SATA while remaining

strictly faster. However, when compared to a digital accelerator this

digital memory approach consumes roughly the same amount of

energy as a digital array, with slight variations across the bench-

marks. While in practice digital arrays need to slow significantly to

achieve this energy efficiency [1], the EDP difference is significant.

This stems in part due to the cost of extra domain conversions,

and in part due to the memory systems dominating the cost of

inference. This illustrates the need for temporal memory in order

to drive continued improvements in energy efficiency. Using this

design our systolic array becomes significantly more energy effi-

cient, even when using an incredibly small design. DS TM and DS

TM Tiny provide 2.5× to 3.5× improvement in energy consumption

compared to the digital design for all benchmarks except for anom-

aly detection, while achieving 12× to 45× better energy efficiency

compared to SATA. This shows the potential future for our pro-

posed array, demonstrating how operations within a fully temporal

system can provide significantly better energy efficiency than even

the most aggressive digital approaches.

6.3 Implications of Broadcast Scaling

While we show several design points that provide very energy effi-

cient inference for the MLPerf Tiny benchmarks while maintaining

accuracy, the final question is how this technique scales to larger

systolic arrays. In terms of accuracy, larger networks tend to be

more resilient to error, especially when trained with regularization

techniques. This can be seen in Figure 8 and Table 2, where the

visual wake word application is much less affected by both the

number of terms and the PE tree size. This application leverages

the Mobilenet [24] network architecture, which is by far the largest

network of the benchmark suite, showing how size can lead to

better noise resilience.

For larger networks, a larger array may be necessary to meet

performance goals. This can generally be achieved in two ways:

increasing the size of the array (scale up), or adding more arrays in

a tile-wise manner (scale out). The trade-offs between the two have

been well studied [46], and the delay space systolic array shares

many of the same trade-offs because it leverages the same dataflows

as ANNs. The only additional complexity is the broadcast operation,

which introduces increasingly more noise as the array grows.

We analyze this impact in Figure 13, where we assume a system

that augments the broadcast operation with buffers at every split

of the broadcast tree, and a buffer every 50𝜇𝑚 to ensure sharp
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rising/falling edges. We calculate the maximum error from this

system assuming a maximum voltage variation of 5 mV in a system

with a 700 mV supply, and three standard deviations of RJ. This

maximum timing error is then divided by the timing margin that

would cause a TDC at the PE to flip a bit.

Larger PE trees introduce noise at a faster rate as the array

width scales because each PE has a physically larger footprint. This

causes the required broadcast distance to increase, allowing for

larger worst case error. However, even the larger designs stay well

under the timing margin, even assuming worst case noise. This

small amount of noise, coupled with noise-robust neural networks,

allows the array to scale to several times the size of the arrays we’ve

analyzed.

7 Related Work

There has been a large body of work in digital systolic arrays that

focuses on minimizing memory accesses and data movement [11,

12, 65]. While this clearly represents an important area of research,

the digital MAC operation establishes a lower energy bound, and

alternative arithmetic options must be investigated to push for low

energy operations.

Spiking neural networks[21] have attempted to resolve this issue

by changing the base neuron model to a leaky-integrate-and-fire

model [54], which removes the need for expensive multiplication

operations. Several industrial chips have been developed, such as

Loihi [17] and TrueNorth [5], but it has proven difficult to achieve

similar accuracy to ANNs while still maintaining the energy effi-

ciency advantage [20].

While others have explored the connection between ANNs and

SNNs in the past, with prior schemes using unique neurons, such

as leaky-integrate-and-fire or integrate-and-fire, these cannot be

mapped exactly to the functions used in ANNs. This imperfect

mapping introduces several types of errors that are difficult to

overcome [58]. Additionally, these conversions are implemented

traditionally with digital architectures, and require either a large

number of timesteps [31] or multi-valued spikes to recoup the

accuracy of ANN networks. SNNs that require a large number of

timesteps have been shown to have very poor latency and energy

efficiency [50] while multi-valued spikes allow for fewer time steps

but then require matrix multiplication on a similar scale to ANNs.

Alternatively, several unary computing approaches have been

investigated in recent years, particularly focused on stochastic com-

puting accelerators [32]. This approach uses a random bitstream to

perform energy efficient computation. Some approaches leverage

emerging technologies to generate the random values [16], while

others rely on expensive digital random number generators [61].

This approach allows for incredibly energy efficient computation,

but requires a large number of cycles for values to stabilize. The

random number generation either consumes significant hardware

resources or is difficult to implement. Finally, creating a config-

urable architecture requires a large number of conversions between

domains, resulting in more expensive inference costs [62].

Other work has instead focused on purely temporal computa-

tion, using wavefront computing to perform energy efficient DNA

sequencing [14, 15, 36] and graph operations [35]. Boosted race

trees [56] even leverage the basic race logic framework for energy

efficient decision tree inference. However, race trees have been

shown to have limited effectiveness when applied to larger infer-

ence tasks [56]. Compac [49] uses an analog temporal memory to

perform addition and multiplication, thus allowing it to perform

inference. While this achieves energy efficiency it comes at the cost

of performance since the operations become linear, forcing iterative

multiplications.

8 Conclusion

We present a new approach to machine learning inference which

bridges the gap between spiking neural networks (SNNs) and tra-

ditional artificial neural networks (ANNs) through temporal arith-

metic. We show how temporal computation can be extended to

implement a log-transformed version of neural networks by inter-

preting neural weights as delay elements and activations as a single

“spike” in time. This transformation simplifies the dot-product cal-

culation at the core of the network, and uses carefully optimized

approximations for the simplified computations.

Implementing full neural networks directly in this log-time do-

main introduces significant new challenges and opportunities. First,

network weights must be easily loaded and unloaded while also

influencing the delay of signals in the system to achieve the re-

quired scaling. We develop a hybrid temporal/digital approach that

enables weights to be migrated fully digitally while allowing de-

lay operations to remain entirely in the temporal domain. Further

improvements can be achieved by integrating previously demon-

strated temporal memory systems — such systems have never been

evaluated in the context of an end-to-end application. Additionally,

we show that temporal arithmetic presents unexpected opportuni-

ties for energy savings in neural network systems. Two of the most

common additional operators, max-pooling and ReLU, are not only

exceedingly low-cost (e.g., max can be implemented with a single

logic gate) but also simplify temporal arithmetic by eliminating

much of its complexity — for example, ReLU removes the need for

negative rails and their interactions with both positive and negative

rails.

Through a careful analysis of these systems from low-level cir-

cuit noise up to application-level evaluation, we show how such a

scheme is not only viable, but that the different hardware param-

eters can impact the accuracy of the converted neural network,

creating a new set of energy and accuracy trade offs. By effectively

marrying the simplicity and energy efficiency of SNNs with the

well-established structure and functionality of ANNs, this work

opens new avenues for research and development in low power

embedded machine learning systems.
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