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Abstract

Neuroprostheses show potential in restoring lost sensory function and enhancing
human capabilities, but the sensations produced by current devices often seem
unnatural or distorted. Exact placement of implants and differences in individual
perception lead to significant variations in stimulus response, making personalized
stimulus optimization a key challenge. Bayesian optimization could be used to opti-
mize patient-specific stimulation parameters with limited noisy observations, but is
not feasible for high-dimensional stimuli. Alternatively, deep learning models can
optimize stimulus encoding strategies, but typically assume perfect knowledge of
patient-specific variations. Here we propose a novel, practically feasible approach
that overcomes both of these fundamental limitations. First, a deep encoder net-
work is trained to produce optimal stimuli for any individual patient by inverting a
forward model mapping electrical stimuli to visual percepts. Second, a preferential
Bayesian optimization strategy utilizes this encoder to optimize patient-specific
parameters for a new patient, using a minimal number of pairwise comparisons be-
tween candidate stimuli. We demonstrate the viability of this approach on a novel,
state-of-the-art visual prosthesis model. We show that our approach quickly learns
a personalized stimulus encoder, leads to dramatic improvements in the quality
of restored vision, and is robust to noisy patient feedback and misspecifications
in the underlying forward model. Overall, our results suggest that combining the
strengths of deep learning and Bayesian optimization could significantly improve
the perceptual experience of patients fitted with visual prostheses and may prove a
viable solution for a range of neuroprosthetic technologies.

1 Introduction

Sensory neuroprostheses are devices designed to restore or enhance perception in individuals with
sensory deficits. They often interface with the nervous system by electrically stimulating neural tissue
in order to provide artificial sensory feedback to the user [1, 2]. For instance, visual prostheses have
the potential to restore vision to people living with incurable blindness by bypassing damaged parts
of the visual system and directly stimulating the remaining cells in order to evoke visual percepts
(phosphenes) [3–6]. However, patient outcomes with current technologies are limited, with patients
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Figure 1: Left: Deep stimulus encoder (DSE). A forward model (f ) is used to approximate the
perceptual response to electrical stimuli, subject to patient-specific parameters ϕ. An encoder (f−1)
is then learned to minimize the perceptual error between predicted and target percept. Right: Human-
in-the-loop optimization (HILO). Patient-specific parameters ϕ of the DSE are optimized with user
preferences: the patient performs a series of binary comparisons between percepts evoked with
different encoders. New pairs of parameters to compare are adaptively selected so as to efficiently
find the parameters maximizing the patient’s preference. The target changes each iteration.

requiring extensive training to learn to interpret the evoked percepts, which are typically described as
“fundamentally different” from natural vision [7]. Moreover, phosphene appearance varies widely
across patients [8], making personalized stimulus optimization a key open challenge [9].

A major outstanding challenge is translating stimulation into a code that the brain can understand.
Much work has gone into developing computational models that can predict the neuronal or perceptual
response to an electrical stimulus [8, 10, 11] (often called forward models). Once the forward model
is known, a deep neural network can approximate its inverse, thereby identifying the required stimulus
to elicit a desired percept [12–14]. However, these inverse models typically assume perfect knowledge
of any patient-specific parameters of the forward model (which is often not practically feasible) and
are heavily reliant on the forward model’s accuracy over the entire stimulus space.

Alternatively, Bayesian optimization has been successful in personalizing stimulation strategies for
many existing neural interfaces [15, 16]. However, this approach is often not practically feasible
because it requires the stimulus dimension to be small (typically < 30 [17], which is orders of magni-
tudes smaller than the number of stimulus parameters in current implants), and optimization must
be repeated for every new input. Moreover, visual prosthesis users can typically only give indirect
feedback (e.g., verbal phosphene descriptions), unsuitable for traditional Bayesian optimization.

To address these challenges, we propose a novel framework that integrates deep learning-based
stimulus inversion into a preferential Bayesian optimization strategy to learn a patient-specific
stimulus encoder (Fig. 1). First, a deep stimulus encoder (DSE) is trained to optimize stimuli
assuming perfect knowledge of a set of patient-specific parameters (Fig. 1, left). Second, we embed
the DSE within a human-in-the-loop optimization (HILO) strategy based on preferential Bayesian
optimization, which iteratively learns the ground-truth patient-specific parameters through a series of
‘duels’, where the patient is repeatedly asked their preference between two candidate stimuli. The
resulting DSE can then be deployed as a personalized stimulation strategy.

To this end, we make the following contributions:

• We introduce a forward model for retinal implants that achieves state-of-the-art response predic-
tions. Unlike previous models, this allows us to train a deep stimulus encoder to predict optimal
stimuli across 13 dimensions of patient-specific parameters.

• We propose a personalized stimulus optimization strategy for visual prostheses, where a human-
in-the-loop optimization (HILO) Bayesian optimization algorithm iteratively learns the optimal
patient-specific parameters for a deep stimulus encoder.
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• We demonstrate the viability of our approach by conducting a comprehensive series of evaluations
on a population of simulated patients. We show HILO quickly learns a personalized stimulus
encoder and leads to dramatic improvements in the quality of restored vision, outperforming
existing encoding strategies. Importantly, HILO is resilient to noise in patient feedback and
performs well even when the forward model is misspecified. We make our forward model,
encoder, and HILO algorithm publicly available.

2 Background and Related Work

Visual Neuroprostheses Numerous groups worldwide are pursuing a visual prosthesis that stimu-
lates viable neuronal tissue in the hope of restoring a rudimentary form of vision to people who are
blind (Fig. 2, left) [3–6]. Analogous to cochlear implants, these devices electrically stimulate sur-
viving cells in the visual pathway to evoke visual percepts (phosphenes). Existing devices generally
provide an improved ability to localize high-contrast objects and perform basic mobility tasks.

Much work has focused on characterizing phosphene appearance as a function of stimulus and
neuroanatomical parameters [2, 10, 18–20]. In epiretinal implants, phosphenes often appear distorted
due to inadvertent activation of nerve fiber bundles in the optic fiber layer of the retina [8], causing
elongated percepts (Fig. 2, center). In addition, the exact brightness and shape of these elicited
percepts depends on the applied stimulus [19] and differs widely across patients (Fig. 2, right).
Granley et al. [11] captured these individual differences with a set of patient-specific parameters,
denoted by ϕ, which may include both neuroanatomical (e.g., implant location) and stimulus-related
parameters (e.g., how brightness scales with current amplitude).

Deep Stimulus Encoding Many works attempt to mitigate distortions in prosthetic vision, but do
not describe comprehensive stimulation strategies [21–23]. Those that describe strategies in detail
typically require simplification [24] or strong assumptions [25] to be used in practice. Due to the
complexities of optimization, deep learning-based stimulus encoders have risen in popularity [12–14].
In [12], authors proposed an innovative approach where the latent representations of an autoencoder
are treated as stimuli and decoded with a phosphene model. However, they used an unrealistic
binary phosphene model. Their approach has since been adapted for cortical models [26], and for
non-differentiable forward models [13]. Granley et al. [14] generalized the approach, showing it
could work with realistic forward models across a small range of patients without needing to retrain.

Given a forward (phosphene) model f (mapping stimuli to percepts given ϕ), it is straightforward to
show that the optimal stimulus encoder (mapping target images to stimuli) is the pseudoinverse of
f [14]. However, to account for the wide range of individual differences in phosphene perception,
most realistic forward models are highly nonlinear and not analytically invertible. Thus, previous
works have proposed to use the forward model [12, 14] as a fixed decoder within a deep autoencoder
trained to minimize the reconstruction error between target images and the predicted percepts. After
training, the encoder can be extracted and used to encode target visual inputs in real time. Deep

Figure 2: Left: Visual prosthesis. Incoming target images are transmitted from a camera to an implant
in the retina, which encodes the image as an electrical stimulus pattern. Center: Electrical stimulation
(red disc) of a nerve fiber bundle (gray lines) leads to elongated tissue activation (gray shaded region)
and a phosphene (bottom). Right: The same stimulus parameters may lead to widely varying visual
perceptions in different patients. Adapted with permission from [14].
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stimulus encoders trained using this approach produce high quality stimuli, but assume knowledge of
ϕ. Additionally, if the forward model f is not extremely accurate over the whole stimulus space, then
the encoder network might learn to exploit inaccuracies in the model, producing stimuli that don’t
generalize to real patients [14]. We utilize an enhanced variant of this approach in our experiments.

Preferential Bayesian Optimization Preferential Bayesian optimization (PBO) is an efficient
method for optimizing expensive black-box functions based on binary comparisons [27, 28]. Since
the subject’s response to stimulation cannot be directly observed, PBO instead builds a Bayesian
model of the subject’s preferences, g, typically modeled using a Gaussian process. An approximate
inference algorithm (expectation propagation; [29, 30]) is used to infer the posterior distribution
of the preference function given binary comparison data, p(g|D), which is then used to select new
configurations for the next trial according to an acquisition rule. The acquisition rule must balance
the exploration-exploitation trade-off inherent to any black-box optimization problem [31].

PBO was previously used to tune BCI stimulation parameters for transcranial [32] and spinal cord
stimulation [33]. However, these works directly optimized only a handful of stimulation parameters,
and cannot translate to visual prostheses, where complex and varying visual inputs have to be mapped
to high-dimensional stimuli. To this end, Fauvel & Chalk [34] reduced optimization complexity by
inverting a perception model, then using PBO to generate perceptually preferred encodings. However,
a linear approximation was used to invert the perception model, which is unrealistic for real-world
applications.

Summary We identify 3 main limitations of previous work that this study aims to address:

• Generalizability of deep stimulus encoders. Autoencoder-like deep stimulus encoders can
accurately optimize stimuli, but require perfect knowledge of patient-specific parameters [14],
which can be difficult or impossible to determine in practice [8, 11]. Further, these approaches
heavily rely on the accuracy of the forward model [13, 14], while real patients will likely deviate
from the forward model. We overcome this limitation by optimizing the learned stimulus encoder
based on patients’ preferences, which we show is not bounded by a misspecified forward model.

• Applicability of Bayesian optimization. Bayesian optimization is ideally suited for optimizing
stimulation parameters based on limited, noisy measurements, but can only optimize a small
number of parameters [17]. We use a deep stimulus encoder to reduce the stimulus search space,
enabling Bayesian optimization.

• Simplistic models of perception. Most previous approaches use overly simplified forward models
that do not match empirical data [8, 19]. More accurate models [11] are too computationally
expensive to support deep stimulus optimization over a wide range of patients.

3 Methods

General Framework We consider a system attempting to optimize stimuli for a new patient,
specified by a set of (unknown) parameters ϕ. The goal of optimization is a patient-specific stimulus
encoder mapping target perceptual responses t (e.g., visual percepts) to stimuli s: s = e(t;ϕ).

We assume there exists a forward model f which predicts the patient’s perceptual response to
stimulation: t̂ = f(s;ϕ). It follows that the optimal stimulus encoder is the inverse of f under
some distance metric d (i.e., e = f−1). The inverse can be approximated using an autoencoder-like
deep neural network [14], with weights trained to minimize the reconstruction error between t and t̂
across patients and a dataset of targets (Eq. 1). During training, ϕ is sampled from a uniform random
distribution spanning the ranges of empirically observed patient-specific parameters.

min d(f(f−1(t, ϕ);ϕ), t) (1)

Once trained, the encoder can accurately predict stimuli, but requires knowledge of the patient-specific
parameters ϕ. For a new patient, Bayesian optimization is used to optimize ϕ based on user feedback,
thereby learning a personalized DSE. The underlying assumption is that the Bayesian optimization
objective is related to the distance function used when training the deep stimulus encoder. Since the
patient’s response cannot be directly measured for visual prostheses, the user is presented with a
‘duel’, i.e. a binary comparison, where they are asked to decide which of two candidate stimuli they
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Table 1: Patient-Specific Parameters ϕ

Phosphene Model Parameters Implant Parameters
ρ (dva) λ ω a0 a1 a2 a3 a4 ODx (µm) ODy (µm) x (µm) y (µm) rot (deg)

Lower 1.5 .45 .9 .27 .42 .005 .2 -0.5 3700 0 -500 -500 -30
Upper 8 .98 1.1 .57 .62 .025 .7 -0.1 4700 1000 500 500 30

prefer [34]. Finally, the posterior is updated based on the patient’s response, and the process can be
repeated to iteratively tune the DSE to the patient’s preferences (Section 3).

Phosphene Model The phosphene model is a differentiable approximation of the underlying
biological system (also called a forward model [14]), which maps an electrical stimulus to a visual
percept. Although phosphene models exist for visual prostheses, current models either do not match
patient data well [8, 10, 19], or are computationally expensive [11], prohibiting training a DSE that
works across multiple patient-specific parameters.

Thus, we developed a new phosphene model for epiretinal prostheses. The model takes in a stimulus
vector s ∈ Rne×3 specifying the frequency, amplitude, and pulse duration of a biphasic pulse
train on each electrode. The output phosphene for each electrode is a Gaussian blob centered over
the electrode’s location µe(ϕ) with covariance matrix Σe(s, ϕ) constructed so that the resulting
percept will have area ρe(s, ϕ), eccentricity λe(s, ϕ) and orientation θe(ϕ). These functions allow
phosphene properties to vary locally with stimulus (e.g., current spread) and anatomical parameters
(e.g., electrode location, underlying axon nerve fiber bundle trajectory). The percept for each electrode
is made from sampling a Gaussian distribution, renormalized to have maximum brightness be(s, ϕ):

x ∼ 2πbe det (Σe) N (x|µe,Σe), (2)

where be, µe, and Σe are implicitly parametrized by s and ϕ. The covariance matrix Σe = RΣ0R
T

is calculated from the eigenvalue matrix Σ0 and a rotation matrix R:

Σ0 =

[
s2x 0
0 s2y

]
, R =

[
cos θe − sin θe
sin θe cos θe

]
.

The eigenvalues sx and sy depend on the intended phosphene area (ρe) and elongation (λe):

s2x = −
ρe
√
1− λ2

e

2π
, s2y = − ρe

2π
√
1− λ2

e

.

Blobs from individual electrodes are summed into a global percept. Although the sum across
electrodes is linear, modulating the size and eccentricity of phosphenes with stimulus parameters
makes the final result a nonlinear function of stimulus parameters, preventing analytic inversion.
Motivated by previous studies, we used a square 15× 15 array of 150µm electrodes, spaced 400µm
apart [14]. In total, the model is parameterized by 13 patient specific parameters, shown in Table 1.
The ranges for each parameter were chosen to encompass all observed patients, centered on the mean
value across patients [8, 10, 11, 19, 35]. Appendix A.1 describes the full phosphene model in detail.

Deep Stimulus Inversion A deep stimulus encoder (DSE) is a deep neural network responsible
for inverting the forward model to produce the optimized stimulus for a target image and a specific
patient (sϕ = f−1(t, ϕ)). We used a network (45M parameters) consisting of fully-connected layers
and blocks, each block containing 3 fully connected layers, batch normalization, and a residual
connection. The flattened target image and the patient specific parameters were passed separately
through one block each, concatenated, and passed through another block, after which the amplitude
is predicted. The amplitudes were concatenated to the prior intermediate representation, fed through
a final block, after which frequency and pulse duration were predicted. The output layers use ReLU
activation; all others use leaky ReLU. During training, ϕ were randomly sampled from the range
of allowed parameters (Table 1) during training. Tensorflow 2.12, an NVIDIA RTX 3090, Adam
optimizer, and batch size of 256 [36, 37] were used to train the network. The architecture is illustrated
in Appendix B.1.
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Human-in-the-Loop Optimization We propose using preferential Bayesian optimization (PBO)
to optimize the patient-specific parameters ϕ of the pretrained DSE. Given two sets of patient-specific
parameters, ϕ1 and ϕ2, we assume that the probability of a subject preferring ϕ1 to ϕ2 (returning a
response ϕ1 ≻ ϕ2) depends on a preference function g(ϕ), modeled using a Gaussian process model:

P (ϕ1 ≻ ϕ2|g) = Φ
(
g(ϕ1)− g(ϕ2)

)
, (3)

where Φ is the normal cumulative distribution inverse link function [38, 39]. The larger the value of
g(ϕ1) relative to g(ϕ2), the higher the likelihood that the subject reports preferring ϕ1 over ϕ2.

We used the Maximally Uncertain Challenge [40] to select new comparisons to query, although other
popular acquisitions performed similarly (Appendix C.2). Searching within the bounds in Table 1,
this acquisition function selects a ‘champion’, ϕ1, which maximizes the expectation of g, and a
‘challenger’, ϕ2, for which subjects’ preferences are most uncertain:

ϕ1 → argmax
ϕ

Ep(g|D)[g(ϕ)], (4)

ϕ2 → argmax
ϕ

Vp(g|D)[Φ(g(ϕ)− g(ϕ1))], (5)

where V denotes the variance. This algorithm is designed to balance exploitation (values of ϕ that
maximize g) and exploration (values of ϕ for which the response is uncertain).

The performance of PBO crucially depends on the Gaussian process kernel and its hyperparameters,
which encode our prior assumptions about the latent preference function. Inferring the kernel’s
hyperparameters online would slow down the algorithm and could lead to overfitting. Thus, we
adopted a transfer learning strategy, which could also be applied to real-life patients. For each of 10
patients (with parameters different from those used in the following PBO experiment), we simulated
600 random duels and fit candidate hyperparameters for each of 4 commonly used kernels. We
then selected the kernel and hyperparameters that generalized best to the other 9 patients (measured
using Brier score on a held-out test set). The 5/2 Matérn kernel performed best, and was used for all
subsequent experiments. For more details, see Appendix C.1.

Simulated Patients In silico experiments on simulated patients were used to demonstrate the
viability of our approach. Each patient was assigned a set of patient-specific parameters ϕ, uniformly
sampled from the ranges specified in Table 1. When challenged with a duel between two candidate
stimuli sϕ1

and sϕ2
, the simulated patient runs each stimulus through the phosphene model (using

ground-truth patient-specific parameters), obtaining the predicted percepts t̂ϕ1
= f(sϕ1

;ϕ) and
t̂ϕ2

= f(sϕ2
;ϕ). The users’ preferences were modeled with a Bernoulli distribution, with probability

p modulated by the difference in reconstruction error between each percept and the target image:

p =
1

1 + exp(− 1
σ (d(t̂ϕ2

, t)− d(t̂ϕ1
, t)))

(6)

Here, σ is a configurable parameter that scales the width of the sigmoid, introducing noise into the
response. We set σ to be 0.01, chosen empirically based on a conservative estimate: when the error
difference was greater than 0.01 it was obvious which percept was better to human observers.

Data and Metrics We used MNIST images as target visual percepts throughout the experiments.
Images were resized to be the same size as the output of f (49x49 pixels), and scaled to have
a maximum brightness of 2 (aligned with range(f )). Inspired by [12, 14], we used a perceptual
similarity metric designed to capture higher-level differences between images [41]. Let vl(t) be a
function that extracts the downstream representations of target t input to a VGG19 network pretrained
on ImageNet [42]. The perceptual metric is then given by equation 7.

d(t, t̂) =
1

|t|
(||t− t̂||22 + β||vl(t)− vl(t̂)||22) (7)

This metric was used by the deep stimulus encoder as a training objective, by the simulated patient
to choose a duel winner, and throughout HILO as an evaluation metric. β = 2.5e-5 was selected
via cross-validation. To aid in interpretability, we also report a secondary metric based on how
identifiable the predicted percepts were. We first pretrained a separate deep net to 99% test accuracy
on MNIST classification. We then measured the accuracy of this classifier on the predicted percepts
at every iteration of HILO.
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Figure 3: Percepts resulting from a naive encoder and the trained DSE for two example target images
across 25 randomly selected patients.

4 Results

4.1 Phosphene Model

To verify that our phosphene model’s predictions line up with observed results from real prosthe-
sis users, we repeated analyses from previous state-of-the-art models, evaluating how phosphene
appearance changes with electrode location [8] and stimulus parameters [10, 11, 19, 35]. We used
the same datasets, consisting of thousands of phosphene drawings and brightness and size ratings
collected across multiple epiretinal prosthesis [3] patients over several years. To evaluate phosphene
appearances with electrode location, we calculated the correlation between predicted and observed
phosphenes for three shape descriptors: area, eccentricity, and orientation. The final score reported
is 1 −

∑
i R

2
i , summed across shape descriptors [8]. To evaluate how phosphene appearance was

modulated by stimulus parameters, we calculated the mean squared error between the size and
brightness of predicted percepts and patient ratings as amplitude, frequency, and pulse duration were
varied. The reported values correspond to Figures 4a–c and 5 in [11].

Evaluation results are presented in Table 2. Our model significantly outperforms the previous SOTA
on the Beyeler et al. evaluation, and matches SOTA on the Granley et al. evaluations. Moreover,
this model is much more amicable to inclusion in a deep neural network. We defer a more detailed
description of evaluation methods and additional analysis to Appendix A.2.

Table 2: Evaluation of Phosphene Model

[8] [11]

Model S1 S2 S3 4A 4B 4C 5

Previous state of the art [11] 2.43 7.07 1.15 0.9 2.1 0.16 49.5
Proposed 0.28 0.57 0.38 0.73 2.3 0.1 48.6

4.2 Deep Stimulus Encoder

We trained a deep stimulus encoder (DSE) to invert our phosphene model (decoder). The encoder
was trained across 13 patient-specific parameters, randomly selected at every epoch, including for the
first time implant position and rotation. This is in contrast to previous DSEs, which either require
retraining for every new patient [12, 13, 26], or can only vary two patient-specific parameters [14].

We compared the performance of the DSE to a traditional (‘naive’) encoder [14] currently used
by retinal prostheses [3], illustrated in Fig. 3. The DSE achieved a test perceptual loss of 0.05
and a MNIST accuracy of 95.6%, significantly outperforming the naive encoder (5.68 and 51%
respectively). Note that this performance is when the true patient-specific parameters are known.
This performance is similar or slightly better than the values reported in [14] despite training across
11 additional patient-specific parameters.
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Figure 4: Human-in-the-loop optimization of a deep stimulus encoder. A: Two example duels, from
which patient preferences are learned. B: Reconstruction error throughout optimization across 100
simulated patients. Insets show the predicted percept resulting from stimulation with various encoders.
Note the y axis is on a log scale. C: MNIST accuracy of a pretrained classifier on reconstructed
phosphenes. Both plots show smoothed median (window size of 3), with error bars denoting IQR. D:
Example percepts after optimization for Naive, DSE without HILO, and HILO encoders.

4.3 Human-in-the-Loop Optimization

We ran deep learning-based HILO for 100 randomly selected simulated patients. After every duel, we
evaluated the DSE parameterized by the current prediction of patient-specific parameters on a subset
of the MNIST test set. The performance of the learned encoder over time (‘HILO’) is illustrated in
Figure 4, which plots the joint perceptual loss (Figure 4.B) and MNIST accuracy (Fig. 4C). We also
show example duels and percepts for an example patient.

As baselines for comparison we used a naive encoder, a non-personalized DSE where the patient-
specific parameters are guessed (DSE-ϕGuess), and an ideal DSE using the true ϕ (DSE-ϕTrue). To
guess ϕ, we consider two approaches, one which selects the mean value across the ranges in Table 1,
and another which selects random ϕ, averaged across all possible random selections from the same
range. Note that we randomly selected our 100 simulated patients to be from this same range, so both
of these approaches for guessing ϕ are likely biased, especially the mean. In reality, we postulate that
the performance of a deep stimulus encoder without patient-specific optimization would likely fall
somewhere between these two methods, since the distribution of real patients is likely not perfectly
aligned with Table 1. We therefore plot the region bounded by the performance of a DSE with either
of these approaches for guessing ϕ. Example percepts after optimization are shown in Fig. 4D.

The HILO encoder starts with random predictions, but, after a short initial exploration period,
quickly surpassed the baselines. After about 75 iterations, performance approached the ideal DSE
encoder, however the HILO encoder still resulted in high-quality percepts after as few as 20 iterations.
Averaged across patients, the final reconstruction error of the HILO encoder was .071 ± .0031 (SEM)
and MNIST accuracy was 92% ± 1.0%. DSE-ϕGuess had an error of between .25 and 1.1 and
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Figure 5: Reconstruction error through optimization for noisy patient responses (upper left) and
for various misspecifications in the forward model assumed by the DSE. Noise level denotes the
percentage of duels where the decision was essentially random (p ∈ [0.35, 0.65]), corresponding to σ
of 1e-4, 0.005, 0.01, 0.02, and 0.05, respectively. All y axes are on log scales. Naive encoders and
some error bars omitted for clarity.

MNIST accuracy between 58.6% and 78.3%, and the DSE with true ϕ had an error of .05 ± .001 and
accuracy of 95.5% ± .1%.

4.4 Robustness

In reality, it is likely that a patient’s responses will not be perfectly captured by the phosphene
model. Further, patient responses for visual prostheses are notoriously noisy [7, 43]. To test HILO’s
resiliency to these variations, we conducted additional robustness experiments, each with the same 25
simulated patients (Figure 5). First, we varied the noise parameter σ that simulated patients use to
make decisions (Figure 5A). Next we constructed various ‘misspecified’ forward models, where the
ground-truth model used to decode stimuli differed from the forward model assumed by the DSE.
First, we varied the trajectories of the simulated axon bundles [44], thereby changing the orientation
of phosphenes (Figure 5C). Second, threshold amplitudes for stimulation are notoriously hard to
predict, and have been shown to drift by up to 300% over time [45]. Therefore, we tested a variant
where the threshold assumed by the encoder was incorrect by up to 300% (Figure 5B). Lastly, we
used the same forward model, but with patient-specific parameters outside the bounds of the stimulus
encoder and PBO algorithm (Figure 5D).

At σ=1e-4, the patient response was noiseless. For σ equal to .005, .01, and .02, HILO performed
similarly to the noiseless model, despite the patient on average making ‘random’ (p ∈ [0.35, 0.65])
decisions in 26%, 38%, and 48% of duels. At σ=0.05, the decision was ‘random’ 2/3 of the time, and
HILO performed similarly or slightly better than the baseline DSE-ϕGuess. The DSE itself is very
resilient to misspecifications in axon trajectory, so HILO performs similarly for this misspecification
to the original patients. When thresholds varied, HILO still outperformed the baselines, but converged
to slightly worse encodings than without misspecification. Further, HILO surpassed the DSE encoded
with the ground-truth ϕ, demonstrating HILO’s improved resiliency. For out-of-distribution ϕ, HILO
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again outperformed both the baseline and true DSEs, but performed worse than in-distribution
patients.

5 Discussion

Our experiments show that HILO optimization of a deep stimulus encoder led to high-quality,
personalized stimulation strategies that outperformed previous state-of-the-art techniques. HILO led
to an increase in percept quality compared to using a non-personalized DSE for 99% of simulated
patients, demonstrating the viability of our approach. To enable our HILO algorithm, we also
developed a new phosphene model, which is computationally simpler and matches patient data better
than previous models, and trained a new DSE, which is able to produce high-quality encodings across
all 13 dimensions of patient-specific variations included in our phosphene model. Together, these
significantly advance state-of-the-art in patient-specific stimulus encoding, and are important steps
towards practically-feasible personalized prosthetic vision in real patients.

The proposed framework combining Bayesian optimization and deep stimulus encoding offers
significant improvements over both components in isolation. Use of a DSE allows us to incorporate
prior information, reducing the dimensionality of the Bayesian optimization search space from the
large stimulus space to the much smaller model parameter space. Our results demonstrate that
even when the DSE’s predictions are incorrect, this parameterization is still useful for Bayesian
optimization based on patient preferences. Additionally, DSEs are able to invert highly nonlinear
forward models, enabling encoder-parameterized Bayesian optimization to be applied to a much
larger set of problems. Lastly, the learned encoder can be applied for any target percept, without
needing additional optimization. Conversely, without adaptive feedback from HILO, deep stimulus
encoders have no method for learning the individual differences of a new patient, which we show
leads to suboptimal stimuli. DSEs rely on the accuracy of their assumed forward model over the
entire stimulus space. We show that our approach produces stimuli that work well for the patient,
even when the forward model is misspecified, or when the patient’s responses are noisy.

This approach is practical for stimulus optimization in the wild. The encoder learned during opti-
mization is lightweight, and once deployed, can predict individual stimuli in less than 5ms on CPU,
allowing for high frame rates for prosthetic stimulation. During HILO, updating the Gaussian process
model and producing new stimuli on average took 3 seconds, meaning that stimulus optimization
could be performed in a matter of minutes. A HILO strategy could be bundled with future visual
prostheses, allowing for patients to periodically re-calibrate their devices when they feel the device is
not performing adequately, without requiring a clinical professional.

Broader Impacts Although we demonstrate this approach in the context of visual prostheses, our
framework is general and could be applied to a variety of sensory devices. Our approach is applicable
when the stimulus search space is large and there exists a forward model mapping stimuli to responses.
Forward models [46–49] and deep stimulus encoders [50–52] have been successfully used across
multiple sensory modalities, and could potentially be adapted for personalization with HILO.

Limitations Although promising, our approach is not without limitations. We assumed that the
preference of patients for different stimuli is related to the distance metric used to measure perceptual
similarity, which may not be true in practice. However, results by [34] suggest that PBO is robust to a
mismatch between the distance metric used to invert the forward model and the preference of patients.
Another limitation is that evaluation of our approach was only performed on simulated patients with
a simulated perceptual model. However, this is mitigated by the fact that HILO showed robustness to
model inaccuracies. Still, since it is difficult to predict the behavior of deep learning models, using
a deep stimulus encoder in real patients could raise safety concerns. It may be possible for a deep
encoder to produce unconventional stimuli, potentially leading to adverse effects. However, most
devices come with firmware responsible for ensuring stimuli stay within FDA-approved safety limits.

In conclusion, our results suggest that combining the strengths of deep learning and Bayesian
optimization could significantly improve the perceptual experience of patients fitted with visual
prostheses and may prove a viable solution for a range of neuroprosthetic technologies.
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Appendix

A Phosphene Model

A.1 Methods

This section describes the phosphene model used to simulate patient’s perception resulting from
stimulation. The model takes in a stimulus vector s ∈ Rne×3 specifying the frequency (freq),
amplitude (amp), and pulse duration (pdur) of a biphasic pulse train on each electrode. In addition,
the model also takes in a vector of patient-specific parameters ϕ (see Table 1). We break these
parameters down into implant parameters (x, y, rot), global parameters (ρ, λ, ω, ODx, ODy), and
stimulus-related parameters (a0-a4); all explained below.

Exact implant locations vary patient-to-patient. The three implant parameters allow our model to
account for these changes. We used a simulated implant inspired by designs of real epiretinal implants
[3, 53] and those used in previous simulation studies [14]. It consists of 225 disk electrodes (radius
75 µm arranged onto a square, 15× 15 grid with 400 µm spacing, initially centered over the fovea.
The three implant-related parameters translate and rotate the initial implant to be centered at (x, y),
and to be rotated by rot degrees. The implant used is depicted in Figure A.2, overlaid on top of a
simulated map of axon nerve fiber bundles [54].

Figure A.1: The implant used for optimization, and an example implant after rotation and translation
based on patient-specific parameters ϕ. The white circle on the right is the optic disc. Arced lines
depict simulated axon nerve fiber bundles.

The remaining model parameters are inspired by various psychophysical and electrophysiological
studies [8, 10, 18, 19, 55], and are summarized in the following list:

• ρ : Average phosphene size. This will be modified locally based on stimulus parameters.
• λ : Average phosphene eccentricity (a measure of phosphene elongation; not to be confused with

retinal eccentricity). This will be modified locally based on stimulus parameters.
• ω : Orientation scaling factor. The orientation of phosphenes will be the orientation of the

underlying axon bundle, scaled by ω (Eq. 11).
• ODx, ODy: The x and y location of the patient’s optic disc, into which axon nerve fiber bundles

terminate.
• a0-a2: Coefficients to modulate phosphene brightness with stimulus parameters (Eq. 8).
• a3 : Coefficient to modulate phosphene size with stimulus parameters (Eq. 9).
• a4 : Coefficient to modulate phosphene eccentricity with stimulus parameters (Eq. 10).

Each electrode’s location on the retina can be determined from the implant parameters. The cor-
responding location in the visual field (µe) is determined using the retinotopic map described in
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Watson et al. [56]. Each electrode’s phosphene orientation is then θe = ωθaxon, where θaxon is the
orientation of the axon nerve fiber bundle (NFB) underlying the cell (pixel). Axon NFBs are modeled
as spirals originating at the optic disc and terminating at each simulated cell. These spirals follow
a simulated axon map [44] based on tracings of axon trajectories in 55 human eyes. In summary,
phosphene size, eccentricity, brightness, and orientation are modulated based on stimulus parameters
and implant location according to the following equations:

be = a0(ampe)
a1 + a2(freqe) (8)

ρe = ρ ∗ a3 ∗ ampe (9)

λe = λ

(
pdur

0.45

)a4

(10)

θe = ω ∗ θaxon (11)

The phosphene for each electrode is sampled from a multivariate Gaussian distribution, centered at
the electrodes location in visual field (µe), and with covariance matrix Σe constructed such that the
resulting phosphene will have brightness be, size ρe, eccentricity λe, and orientation θe, as shown in
the following equations (repeated from main text for convenience):

x ∼ 2πbe det (Σe) N (x|µe,Σe), (12)

The covariance matrix Σe = RΣ0R
T is calculated from the eigenvalue matrix Σ0 and a rotation

matrix R:

Σ0 =

[
s2x 0
0 s2y

]
, R =

[
cos θe − sin θe
sin θe cos θe

]
.

The eigenvalues sx and sy depend on the intended phosphene area (ρe) elongation (λe), and a
constant ϵ (set to e−2):

s2x = −
ρe
√
1− λ2

e

2π ln ϵ
, s2y = − ρe

2π ln ϵ
√
1− λ2

e

.

This formulation guarantees that the sampled Gaussian blob, when thresholded using ϵ, will have the
intended area, orientation, eccentricity, and brightness.

Blobs from individual electrodes are summed into a global percept. Although the sum across
electrodes is linear, modulating the size and eccentricity of phosphenes makes the final result a
nonlinear function of stimulus parameters, preventing analytic inversion.

A.2 Evaluation

Our model is motivated by similar anatomical and psychophysical phenomena as the previous state-
of-the-art model for epiretinal prostheses [11], but its formulation allows for favorable computational
properties. In comparison, our model is on average 45x faster to run, and consumes about 120x less
GPU memory. These computational benefits are the main reason a new model was necessary, and
enables a more advanced deep stimulus encoder by allowing training with larger encoder models,
longer training duration, and larger batch sizes.

Nonetheless, we also verified that the model produces state-of-the-art predictions, as described in
Section 4.1. Despite its similar design, our model achieves much better scores on the Beyeler et
al. [8] evaluation for phosphene shape. This is likely because our formulation allows much tighter
control of phosphene shape attributes (e.g., size, eccentricity), allowing (for the first time) positive
R2 on shape descriptors for held-out electrodes. Our model performs similarly to the previous
state-of-the-art model on the Granley et al. [11] evaluation, which is to be expected given that the
equations modulating phosphene appearance with stimulus parameters in both models are very similar.
Fig. A.2 reproduces the plots from Figures 4A-C and 5 of [11], but with our proposed model included.
These figures show the brightness or size rating from Argus II patient(s) as stimulus parameters
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vary [19, 35], in subjective units. For brightness, ‘10’ means the same as the reference pulse, ‘20’
means twice as bright, etc. For size, ‘1’ means the same as reference pulse, ‘2’ means twice as large
(notation matching [11, 19, 35]).

Figure A.2: Evaluation of phosphene brightness and size as stimulus parameters vary. Reproduced
from [11], but with our proposed phosphene model included. State-of-the-art denotes the phosphene
model from [11]. Units are subjective, in comparison to a reference pulse.
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B Deep Stimulus Inversion

B.1 Methods

The encoder architecture described in Section 3 is illustrated in Fig. B.1.

Figure B.1: Deep stimulus encoder architecture. FC: fully connected layer, BN: batch normalization
layer, B: block of layers (shown at top). Two arrows merging into one fully connected layer denotes
concatenation. 45M total parameters.
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C Human-in-the-Loop Optimization

C.1 Kernel Selection and Hyperparameters

This section gives more details on fitting the hyperparameters for the Gaussian process (GP) kernel
used in preferential Bayesian optimization (PBO). As stated previously, the performance of PBO
crucially depends on the GP kernel and its hyperparameters, which encode our prior assumptions
about the latent preference function.

To select hyperparameters, we simulated 600 random duels (ϕ1 and ϕ2 chosen randomly) on each of
10 simulated patients. For each patient, we fit four commonly used kernels (Squared Exponential,
Squared Exponential with Automatic Relevance Determination (ARD), Matérn 3/2, and Matérn
5/2) and inferred hyperparameters using type II maximum likelihood estimation [57]. For each
of these candidate kernel-hyperparameter pairs, we fit a GP with the corresponding kernel and
hyperparameters to 50 training duels for each of the other 9 patients. Then, the performance of the
candidate GP was evaluated on the remaining 550 data points using Brier score, a commonly used
metric measuring the accuracy of probabilistic predictions:

BS =
1

n

n∑
i=0

(ytrue − ypred)
2, (13)

where ytrue is the true duel outcome (1 or 0) as decided by the simulated patient, and ypred is the
probability of ϕ1 being selected as the winner (corresponding to outcome of 1), as predicted by the
Gaussian process.

The kernel and hyperparameters with the lowest Brier score, averaged across all 9 other patients,
were selected (Matérn 5/2). To verify that this kernel performed well, we also ran human-in-the-loop
optimization (HILO) for 20 random simulated patients, using the best hyperparameters for each of
the four previously mentioned kernels. The results are shown in Figure C.1. The Matérn 5/2 kernel
performed slightly better than the Matérn 3/2 kernel, and significantly better than the ARD kernel.
While performance was similar to the Squared Exponential kernel, we ultimately selected Matérn 5/2
due to its lower Brier score.

Figure C.1: Joint perceptual loss (y axis, log scale) plotted throughout HILO with different Gaussian
process kernels. Error bars denote SEM.
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C.2 Acquisition function

The acquisition function is responsible for choosing ϕ1 and ϕ2 for each duel, and must balance
exploration of the search space with exploiting values of ϕ that are expected to work well. The
Maximally Uncertain Challenge (MUC) [40] acquisition presented in the main text was initially
compared against 2 other top-ranking [40] acquisition functions: Bivariate Expected Improvement
(Bivariate EI) [58], and Dueling Upper Credibility Bound (Dueling UCB) [59]. In addition, we also
compare against a baseline acquisition, where ϕ1 and ϕ2 are chosen randomly for each duel. We ran
HILO for the same 20 random patients for each acquisition.

The joint perceptual loss throughout optimization for each acquisition is presented in Figure C.2. All
of the tested acquisition functions dramatically outperformed the random baseline, which converged
to a value near the mean DSE without HILO. Although MUC and Dueling UCB performed similarly,
we ultimately selected MUC due to its slightly lower final loss.

Figure C.2: Joint perceptual loss (y axis, log scale) plotted throughout HILO with different acquisition
functions. Error bars denote SEM.

C.3 Baselines and Robustness

In this section, we provide further details for the naive encoder we compared against, and the
robustness experiments.

Naive Encoder The naive encoder is the encoding strategy currently used in commercial epiretinal
prostheses [3]. This encoder operates under the assumption that each electrode can be thought of as a
pixel in an image. The optimal stimulus under this assumption is therefore simply a downsampled
version of the target image. The frequency and pulse duration are constant across all electrodes.
This naive encoder has been previously shown to be suboptimal [14], but we still include it as a
comparison to the currently used encoding strategy.

Robustness In section 4.4 we evaluate the robustness of human-in-the-loop optimization (HILO) to
misspecifications in the forward model. Here, we provide specific details on the implementation of
these misspecifications, and how we adapted the baseline encoders to the misspecified scenarios.

• Axon Trajectories: The simulated axon map from [44] has two parameters, βinf and βsup,
which control the axon trajectories in the inferior and superior retina, respectively. [44] also
reports the observed ranges for these parameters: βsup ∈ [−2.5,−1.3] and βinf ∈ [0.1, 1.3].
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The unmodified model uses the centers of these ranges. Under misspecification, we randomly
set both βsup and βinf to one of these bounds for each patient.

• Thresholds: Threshold is the amplitude at which a phosphene becomes visible to a patient
50% of the time. In epiretinal prostheses, thresholds are notoriously noisy, and vary
significantly across electrodes, patients, and over time [45]. While some progress has been
made towards predicting these thresholds [60], most state-of-the-art models assume that
thresholds are known.
With this misspecification, the assumed threshold on each electrode was modified by a
random but systematic amount. Specifically, the threshold on each electrode was randomly
selected to be between 1

2x and 2x its original value for the 100% condition and between 1
4x

and 4x its original value for the 300% condition.
• Out of Distribution: It is also possible that a new patient does not fall within our assumed

ranges. Thus, we tested a variant where the true patient-specific parameters ϕ were sampled
from outside the ranges in Table 1. Specifically, each parameter was sampled to be 0-50%
above or below the specified range (some parameters were clipped to stay within defined
ranges, e.g., λ cannot be outside of [0, 1)).
During HILO, the acquisition functions have specified bounds that they do not generate
samples outside of. We therefore tested two variants, one where PBO was allowed to expand
the bounds, and another where it was confined to within its original bounds. The end
results were similar in terms of DSE performance, so the variant with its original bounds is
presented in the main text.

DSE-ϕGuess is our best approximation of what a DSE would guessed patient-specific parameters
would perform, and is bounded by the performance of a DSE with mean ϕ, and random ϕ from the
ranges in Table 1. For each of the misspecifications, the mean and random ϕ baseline DSEs are still
encoded with the same ϕ as in the unchanged patient, but since the phosphene model for the patient
is changed, the resulting loss is different. DSE-ϕTrue is still parameterized with the patients true ϕ,
however, the true ϕ are no longer a perfect description of the misspecified patient. This is shown by
the fact that HILO surpasses the true encoders performance: under the misspecified model, there
exists some other ϕ which leads to percepts with improved perceptual quality compared to those
encoded with the true ϕ. This highlights the robustness of optimization based on user preferences.
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