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Abstract

Sensory neuroprostheses are emerging as a promising technology to restore lost1

sensory function or augment human capabilities. However, sensations elicited2

by current devices often appear artificial and distorted. Although current models3

can predict the neural or perceptual response to an electrical stimulus, an optimal4

stimulation strategy solves the inverse problem: what is the required stimulus to5

produce a desired response? Here we frame this as an end-to-end optimization6

problem, where a deep neural network encoder is trained to invert a known, fixed7

forward model that approximates the underlying biological system. As a proof8

of concept, we demonstrate the effectiveness of our hybrid neural autoencoder9

(HNA) on the use case of visual neuroprostheses. We found that HNA is able to10

produce high-fidelity stimuli from the MNIST and COCO datasets that outperform11

conventional encoding strategies and surrogate techniques across all tested con-12

ditions. Overall this is an important step towards the long-standing challenge of13

restoring high-quality vision to people living with incurable blindness and may14

prove a promising solution for a variety of neuroprosthetic technologies.15

1 Introduction16

Sensory neuroprostheses are emerging as a promising technology to restore lost sensory function or17

augment human capacities [1, 2]. In such devices, diminished sensory modalities (e.g., hearing [3],18

vision [4, 5], cutaneous touch [6]) are re-enacted through streams of artificial input to the nervous19

system. For example, visual neuroprostheses electrically stimulate neurons in the early visual system20

to elicit neuronal responses that the brain interprets as visual percepts. Such devices have the potential21

to restore a rudimentary form of vision to millions of people living with incurable blindness.22

However, all of these technologies face the challenge of interfacing with a highly nonlinear system of23

biological neurons whose role in perception is not fully understood. Due to the limited resolution of24

electrical stimulation, prostheses often create neural response patterns foreign to the brain. Conse-25

quently, sensations elicited by current sensory neuroprostheses often appear artificial and distorted26

[7, 8]. A major outstanding challenge is thus to identify a stimulus encoding that leads to perceptually27

intelligible sensations. Often there exists a numeric or symbolic forward model, f (Fig. 1A), con-28

strained by empirical data, that can predict a neuronal or (ideally) perceptual response to the applied29

stimulus (see [9] for a recent review). To find the stimulus that will elicit a desired response, one30

essentially needs to find the inverse of the forward model, f−1. However, realistic forward models31

are rarely analytically invertible, making this a challenging open problem for neuroprostheses.32

Here we propose to approach this as an end-to-end optimization problem, where a deep neural33

network (DNN) (encoder) is trained to invert a known, fixed forward model (decoder, Fig. 1B).34

The encoder is trained to predict the patterns of electrical stimulation patterns that elicit perception35

(e.g., vision, audition) or neural responses (e.g., firing rates) closest to the target. This hybrid neural36
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Figure 1: A) Sensory neuroprosthesis. A numeric or symbolic forward model (f ) is used to approxi-
mate the neuronal or, ideally, perceptual response to electrical stimuli. B) Hybrid neural autoencoder
(HNA). A deep neural encoder (f−1) is trained to predict the patterns of electrical stimulation that
elicit responses closest to the target. C) Visual neuroprostheses are one prominent application of
HNA, where an encoder can be trained to predict the electrical stimulation needed to elicit a desired
visual percept. D) The trained encoder is deployed on a vision processing unit (VPU), predicting
stimuli in real-time that are decoded by the patient’s visual cortex.

autoencoder (HNA) could in theory be used to optimize stimuli for any open-loop neuroprosthesis37

with a known forward model that approximates the underlying biological system.38

In order to optimize end-to-end, the forward model must be differentiable and computationally39

efficient. When this is not the case, an alternative approach is to train a surrogate neural network,40

f̂ , to approximate the forward model [10–13]. However, even well-trained surrogates may result in41

errors when included in our end-to-end framework, due to the encoders’ ability to learn to exploit the42

surrogate model. We therefore also evaluate whether a surrogate approach to HNA is suitable.43

To this end, we make the following contributions:44

• We propose a hybrid neural autoencoder (HNA) consisting of a deep neural encoder trained to45

invert a fixed, numerical or symbolic forward model (decoder) to optimize stimulus selection.46

Our framework is general and addresses an important challenge with sensory neuroprostheses.47

• As a proof of concept, we demonstrate the utility of HNA for visual neuroprostheses, where we48

predict electrode activation patterns required to produce a desired visual percept. We show that49

the HNA is able to produce high-fidelity, patient-specific stimuli representing handwritten digits50

and segmented images of everyday objects, drastically outperforming conventional approaches.51

• We evaluate replacing a computationally expensive or nondifferentiable forward model with a52

surrogate, highlighting benefits and potential dangers of popular surrogate techniques.53

2 Background54

Sensory Neuroprostheses Recent advances in neural understanding, wearable electronics, and55

biocompatible materials have accelerated the development of sensory neuroprostheses to restore56

perceptual function to people with impaired sensation. Use of neuroprostheses typically requires57

invasive implants that elicit neural responses via electrical, magnetic, or optogenetic stimulation.58

Two of the most promising applications are cochlear implants, which stimulate the auditory nerve to59

elicit sounds [3], and visual implants (see next subsection) to restore vision to the blind. However, a60

variety of other devices are in development; for instance, to restore touch [6, 14] or motor function61

[15]. The latter differ from other sensory neuroprostheses in that they generate stimuli using motor62

feedback (closed loop) [16, 17]. In the absence of feedback (open loop), a proper stimulus encoding63

is paramount to the success of these devices.64

Restoring Vision to the Blind For millions of people who are living with incurable blindness, a65

visual prostheses (bionic eye, Fig. 2, left) may be the only treatment option [4]. Analogous to cochlear66

implants, these devices electrically stimulate surviving cells in the visual pathway to evoke visual67

percepts (phosphenes), which can support simple behavioral tasks [5, 18, 19].68
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Figure 2: Left: Visual prosthesis. Incoming target images are transmitted from a camera to an
implant in the retina, which encodes the image as an electrical stimulus pattern. Center: Electrical
stimulation (red disc) of a nerve fiber bundle (gray lines) leads to elongated tissue activation (gray
shaded region) and phosphenes whose shape can be described by two parameters, λ (axonal spread)
and ρ (radial spread). Right: Predicted percepts for an MNIST digit using varying ρ and λ values.

A common misconception is that each electrode in the array can be thought of as a pixel in an image;69

to generate a complex visual experience, one then simply needs to turn on the right combination of70

pixels [20]. However, recent evidence suggests that phosphenes often appear distorted (e.g., as lines,71

wedges, and blobs) and vary drastically across subjects and electrodes [4, 7].72

Phosphene appearance has been best characterized in epiretinal implants, where inadvertent activation73

of nerve fiber bundles (NFBs) in the optic fiber layer of the retina leads to elongated phosphenes74

[21, 22] (Fig. 2, center). To this end, Granley et. al [23] developed a forward model to predict75

phosphene shape as a function of both neuroanatomical parameters (i.e., location of the stimulating76

electrode) and stimulus parameters (i.e., pulse frequency, amplitude, and duration). With this model,77

phosphenes are primarily characterized by two main parameters, ρ and λ, which dictate the size78

and elongation of the elicited phosphene, respectively (Fig. 2, right). These parameters can be79

determined using psychophysical tasks (e.g., drawings, brightness ratings) [21, 23], and although80

they vary drastically across patients [21], they do not change much over time [24, 25]. Stimulation81

from multiple electrodes is nonlinearly integrated into a combined perception, and if two electrodes82

happen to activate the same NFB, they might not generate two distinct phosphenes.83

3 Related Work84

The conventional ‘naive’ encoding strategy sets the amplitude of each electrode to the brightness of85

the corresponding pixel in the target image [5, 26], making the stimulus a down-sampled version of86

the target. Although simple, this strategy only works with near-linear forward models, cannot account87

for real phosphene data, and often leads to unrecognizable percepts (Fig. 2, right) [7, 21].88

To provide an alternative, Shah et al. [27] used a greedy approach to iteratively select the stimuli89

that best recreate a desired neural activity pattern over a given temporal window, assuming that the90

brain would integrate them into a coherent visual percept. Ghaffari et al. [28] used a neural network91

surrogate model combined with an interior point algorithm to optimize for localized, circular neural92

activation patterns for individual electrodes. Fauvel et al. [29] used human in-the-loop Bayesian93

optimization to achieve encodings perceptually favored by the subject. Spencer et al. [30] proposed94

framing the problem of stimulus encoding as inversion of a forward model of neural activation95

patterns, but to approximate the inverse, their approach either requires simplification or is NP-hard96

[30]. Furthermore, it cannot predict the perceptual consequences of the predicted neural activity.97

Van Steveninck et al. [31] proposed an end-to-end optimization strategy with a fixed phosphene98

model, similar to HNA. However, their approach crucially differs from ours in that they included99

a secondary DNN to post-process the predicted phosphenes. This is a critical limitation, because a100

low reconstruction loss does not reveal whether a high-fidelity encoder was learned or whether the101

secondary decoder network simply learned to correct for the encoder’s mistakes. In addition, they102

used an unrealistic phosphene model that simply upscales and smooths a binary stimulus pattern. It is103

therefore not clear whether their results would generalize to real visual prosthesis patients.104
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Relic et al. [10] also utilized the end-to-end approach, but without the secondary decoder network used105

in [31]. They used a more realistic phosphene model, which accounts for some spatial distortions106

(e.g., axonal streaks), but not the effects of stimulus parameters. Since including a nontrivial107

phosphene model in the loop is not straightforward, they instead trained a surrogate neural network108

to approximate the forward model. We re-implemented Relic’s surrogate approach in this paper as a109

baseline method to compare against, as described in Section 4.110

Taken together, we identified three main limitations of previous work that this study aims to address:111

1) Unrealistic forward models. Most previous approaches (e.g., [27, 30, 31]) use an overly simpli-112

fied forward model that cannot account for empirical data [7, 21]. We overcome this limitation113

by developing (and inverting) a differentiable version of a neurophysiologically informed and114

psychophysically validated phosphene model [23] that can account for the effects of stimulus115

amplitude, frequency, and pulse duration on phosphene appearance.116

2) Optimization of neural responses. Most previous approaches (e.g., [27, 30]) focus on optimiz-117

ing neural activation patterns in the retina in response to electrical stimulation (“bottom-up”).118

However, the visual system undergoes extensive remodeling during blinding diseases such as119

retinitis pigmentosa [32]. Thus the link between neural activity and visual perception is unclear.120

We overcome this limitation by inverting a phenomenological (“top-down”) model constrained by121

behavioral data that predicts visual perception directly from electrical stimuli [21, 23].122

3) Objective function Most previous approaches rely on minimizing mean squared error (MSE)123

between the target and reconstructed image. Although simple and efficient, MSE is known to be124

a poor measure of perceptual dissimilarity for images [33] and does not align well with human125

assessments of image quality [34]. We overcome this limitation by proposing a joint perceptual126

metric that combines mean absolute error (MAE), VGG, and Laplacian smoothing losses.127

4 Methods128

Problem Formulation We consider a system where there is some known forward process f129

mapping stimuli to responses f : S 7→ R, f(S) ⊂ R. In the case of visual prostheses, f may map130

stimuli to visual percepts. f may /reviseoptionally be parameterized by patient-specific parameters ϕ.131

Finding the best stimulus for an arbitrary target response t ∈ R is equivalent to finding the inverse of132

f . However, since not every response can be perfectly reproduced by a stimulus, the true inverse of f133

is not well defined. We therefore seek the pseudoinverse (still denoted as f−1 for simplicity) instead,134

which outputs the stimuli that produce the closest response to t under some distance metric d:135

f−1(t, ϕ) := argmin
s∈S

d(f(s;ϕ), t). (1)

This problem is straightforward to solve using an autoencoder approach, where a learned encoder136

f−1 is trained to invert the fixed decoder f (i.e., forward model).137

Encoder We approximate the pseudoinverse f−1 with a DNN encoder f̂−1(t, ϕ; θ) with weights θ,138

trained to minimize the distance d between the target image t and predicted image t̂:139

min
θ, ϕ∼p(ϕ)

d(t, t̂) (2)

140

t̂ = f( f̂−1(t, ϕ; θ); ϕ), (3)
where ϕ is sampled from a uniform random distribution spanning the empirically observed range of141

patient-specific parameters [21, 23].142

We use a simple architecture consisting solely of fully connected (FC) and batch normalization (BN)143

[35] layers (1.4M trainable parameters). First, the target t is flattened and input to a FC layer. In144

parallel, the patient parameters ϕ are input to a BN layer and two hidden FC layers. Then, the outputs145

of these two paths are concatenated, and the combined vector fed through two FC layers, producing an146

intermediate representation x. Amplitudes are predicted from x with a FC layer. The amplitudes are147

then concatenated with x, put through a BN layer, and used to predict frequency and pulse duration,148

each with a FC layer. The outputs are merged into a stimulus matrix ŝ. All layers use leaky ReLU149

activation, except for stimulus outputs, which use ReLU to enforce nonnegativity.150
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Decoder The HNA decoder is a differentiable approximation of the underlying biological system,151

and describes the transform from stimulus to response. For our decoder f , we use a reformulated152

but equivalent version of the model described in [23]. This model is specific to epiretinal prostheses;153

analogous models exist for other neuroprostheses (e.g., auditory [36–41], tactile and somatosensory154

[42–46]), and could potentially be adapted for use with HNA. We use a square 15 × 15 array of155

150µm electrodes, spaced 400µm apart and centered on the fovea. The size and scale of this device156

are motivated by similar designs in real epiretinal implants.157

f takes as input a stimulus matrix s ∈ Rnex3
≥0 , where the stimulus on each electrode (se) is a biphasic158

pulse train described by its frequency, amplitude, and pulse duration. A simulated map of retinal159

NFBs is used to predict phosphene shape. Following [21], each retinal ganglion cells’ activation is160

assumed to be the maximum stimulation intensity along its axon. Axon sensitivity is assumed to161

decay exponentially with i) distance to the stimulating electrode (radial decay rate, ρ) and distance to162

the soma along the curved axon (axonal decay rate, λ). To account for stimulus properties [23], ρ,163

λ, and the per-electrode brightness are scaled by three simple equations Fsize(se, ϕ), Fstreak(se, ϕ),164

and Fbright(se, ϕ), respectively.165

The brightness of a pixel located at the point x ∈ R2 in the output image is given by166

f(s;ϕ) = max
a∈A

∑
e∈E

Fbright(se, ϕ) exp

(
−||x− e||22

2ρ2Fsize(se, ϕ)
+

−ds(x,a)
2

2λ2Fstreak(se, ϕ)

)
(4)

where A is the cells’ axon trajectory, E is the set of electrodes, ϕ = {ρ, λ, ...} is a set of 12167

patient-specific parameters, and ds is the path length along the axon trajectory [47]from a to x:168

ds(x,a) =

∫ x

a

√
A(θ)2 +

(
dA(θ)

dθ

)2

dθ. (5)

This model (f ) can be fit to individual patients; however, it is computationally slow and not differen-169

tiable. For more details on these equations, see [23]. We therefore considered two approaches:170

• Differentiable Model: We reformulated equations 4 and 5 into an equivalent set of parallelized171

matrix operations, implemented in Tensorflow [48]. Significant efforts were put towards de-172

veloping a model optimized for XLA engines on GPU, resulting in speedups of up to 5000x173

compared to the model as presented in [23], enabling large-scale gradient descent. To enforce174

differentiability, we numerically approximated ds using |A| = 500 axon segments per axon.175

• Surrogate Model: We also implemented the surrogate approach from [10] as a baseline method,176

where f is approximated with another DNN f̂ϕ(s; θf ) with weights θf . To achieve this we177

generated 50,000 percepts using randomly selected stimuli passed through f and fit a DNN178

to produce identical images. As f is highly dependent on patient-specific parameters ϕ, we179

generated new data and fit a separate surrogate model for each ϕ in our experimental set. Specific180

implementation details of the surrogate are presented in Appendix A. Our implementation181

improves upon [10] by using the more advanced phosphene model described above, which182

accounts for effects of stimulus properties and allows for optimization of stimulus frequency in183

addition to amplitude.184

Metrics To measure perceptual similarity, we use a joint perceptual objective consisting of a VGG185

[49] similarity term, a mean absolute error (MAE) term, and a smoothness regularization term. The186

MAE term is given by LMAE = 1
|t| ||t− t̂||1.187

The VGG term aims to capture higher-level differences between images [31, 50]. The target image188

and reconstructed phosphene are input to VGG-19 pretrained on ImageNet [51], and the MSE between189

the activations on a downstream convolutional layer is computed. Let Vl be a function that extracts190

the activations of the l-th convolutional layer for a given image. The VGG loss is then defined as191

LVGG = 1
|t| ||Vl(t)− Vl(t̂)||22.192

We also include a smoothing regularization term. This term imposes a loss on the second spatial193

derivative of the predicted image. A low second derivative implies that where the target image does194

change, it changes slowly. We found this encouraged smoother, more connected phosphenes. To195

approximate the second derivative, we convolve the image with a Laplacian filter [52] of size k,196
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denoted by Lap(·, k), and compute the mean. The smoothness loss is given by:197

LSmooth =
1

|t̂|

∑
i

( ∂2

dx2
t̂
)
i
=

1

|t̂|

∑
i

Lap(t̂, k)i. (6)

Our final objective is the weighted sum of the three individual losses, given by Eq. 7, where α and β198

are hyperparameters controlling the relative weighting of the three terms.199

d = LMAE + αLSmooth + βLVGG. (7)

We also implement a secondary metric to quantify phosphene recognizability, applicable only for200

the MNIST reconstruction task. We first pre-train a classifier network on the MNIST targets until201

it reaches 99% test accuracy, and then fix the weights. The relative accuracy (RA) is then defined202

as the ratio of the classifiers accuracy on the reconstructed images to its accuracy on the targets203

RA = ACC/ACC(t). A perfect encoder would result in RA = 100%. A similar process was not204

possible for the COCO task due to the possibility of having multiple objects in each target image.205

Training/Optimization We trained using Tensorflow 2.7 [48] on a single NVIDIA RTX 3090 with206

24GB memory. Stochastic gradient descent with Nesterov momentum was used to minimize the207

joint perceptual loss. We used a batch size of 16 due to memory limitations imposed by f . The208

amplitude, frequency predictions are scaled by 2, 20 respectively, while the pulse duration predictions209

were shifted by 1e-3 prior to being fed through the decoder. This encourages the initial predictions210

of the network to be in a reasonable range. The Laplacian filter size k is set to 5. We choose l to211

be first convolutional layer in the last block using cross validation (see Appendix B). Similarly, we212

perform cross validation to find the best values for α and β. Instead of using one value, we found that213

incrementally increasing the weighting of the VGG loss (β) from 0 while simultaneously decreasing214

the initially high weight on the smoothing constraint (α) was crucial for performance, especially215

when the range of allowed ϕ values was large (see Appendix B).216

Datasets We first evaluated on handwritten digits from MNIST [53], enabling comparison to217

previous works [10]. Images preprocessing consisted of resizing the target images to the same shape218

as the output of f (49x49). We also evaluate on more realistic images of common objects from the219

MS-COCO [54] dataset. We selected a subset of 25 of the MS-COCO object categories deemed220

more likely to be encountered by blind individuals (e.g. people, household objects), and use only221

images that contain at least one instance of these objects. We further filter out images by various other222

criteria, such as being too cluttered or too dim. This process results in a total of approximately 47K223

training images and 12K test images. See Appendix C for a full description of the selection process.224

Natural images often contain too much detail to be encoded with prosthetic vision. While scene225

simplification strategies exist [55], we focus on the encoding algorithm, so we simply used the226

ground-truth segmentation masks to segment out the objects of interest. The images were then227

converted to grayscale, and resized to 49× 49 pixels.228

5 Results229

5.1 MNIST230

The phosphenes produced from the HNA, surrogate, and naive encoders on the MNIST test set are231

shown in Fig. 3 and performance is summarized in Table 1. For each MNIST sample, the target232

image is input to the encoder, which predicts a stimulus. The stimulus is fed through the true forward233

model f , and the predicted phosphene is shown. Since the surrogate method must be retrained for234

each ϕ, results are only shown for 4 simulated patients. Our proposed approach outperformed the235

baselines across all metrics (see Appendix D for a comparison of stimuli).236

5.2 COCO237

The phosphenes produced by HNA and the naive encoder for the segmented COCO dataset are shown238

in Fig. 4. We omit the surrogate results due to its poor perceptual performance on MNIST. Averaged239

across all ϕ, HNA had a joint loss of 0.713 on the test set and MAE of 0.1408, while the naive encoder240

had a joint loss of 1.873 and MAE of 0.2830.241
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Figure 3: Reconstructed MNIST targets for HNA, surrogate, and naive encoders across 4 specific
simulated patients. Note that the brightness of the naive encoder is clipped for display

Table 1: MNIST performance

Encoding ρ=150 λ=100 ρ=150 λ=1500 ρ=800 λ=100 ρ=800 λ=1500

Joint Loss MAE RA Joint Loss MAE RA Joint Loss MAE RA Joint Loss MAE RA

Naive 1.161 0.1855 90.3 1.442 0.214 78.1 8.152 1.500 34.8 8.780 1.726 28.8
Surrogate 2.509 0.1351 53.8 3.118 0.2431 30.7 1.692 0.2135 19.9 1.694 0.2237 18.1

HNA 0.559 0.064 98.1 1.029 0.1412 89.3 0.913 0.113 95.9 0.957 0.126 94.8

5.3 Modeling Patient-to-Patient Variations242

MNIST encoder performance across simulated patients (ϕ) is shown in Fig. 5. Since the surrogate243

encoder has to be retrained for each patient, comparison is infeasible. To visualize the effects of244

changing ρ and λ on the produced phosphenes, Fig. 5A shows the result of encoding two example245

MNIST digits, both using the naive method and our encoder. As λ increases, the naive phosphenes246

appear increasingly elongated, and as ρ increases, the phosphenes become increasingly large and247

blurry. The phosphenes from HNA are slightly too dim and disconnected at low ρ, but are relatively248

stable across other values of ρ and λ.249

To compare performance across the entire dataset, we computed the average test set loss across250

the same range of ρ and λ (Fig. 5B). The encoder performs well across a wide range of simulated251

patients, with larger loss only at low ρ. The naive method performs well only on a limited set of ϕ,252

with small λ and ρ ≈ 200. The naive loss was higher than the learned encoder at every simulated253

point. Random sampling of ρ and λ for each image results in a joint loss of 0.921, MAE of 0.120,254

and RA of 94.0% for HNA, while the naive encoder results in a joint loss of 3.17, MAE of 0.596, and255

RA of 63.6%. The same analysis yielded similar results on COCO (Appendix E). An analysis across256

other parameters is presented in Appendix F.257

In order for prosthetic vision to be useful, different instances of the same objects would ideally258

produce similar phosphenes, allowing for consistent perception. To evaluate whether our model259

achieves this, we cluster the target images and resulting phosphenes using t-SNE [56] shown in260

Fig. 5C. The ground truth images form clusters corresponding to the digits 0-9. The phosphenes from261

our encoder roughly form similar, slightly less separated groupings, whereas the naive phosphenes do262

not. To ensure that this was not the result of bad t-SNE hyperparameters, we repeated the clustering263

across different perplexities and learning rates, obtaining similar or worse results.264

5.4 Joint Perceptual Error Ablation Study265

To show that the joint perceptual metric performs better than any of its individual components, we266

train models using just the VGG loss and just MAE loss. Shown are values for ρ=150 and λ=600.267

As mentioned previously, encoders trained using just VGG loss fail to converge, thus we pretrain268

the VGG encoder using MAE and smoothing loss, then transition to using only VGG. We do not269
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Figure 4: Original (top row), segmented (second row), and reconstructed targets for the COCO
dataset, for both HNA (third row) and naive encoders (bottom row). Left to right within each block of
4 images, ρ takes values of 200, 400, 600, 800. Left to right across blocks, λ takes values of 250, 750,
1250, 2000. Note that the brightness of the naive method is clipped for display.

Figure 5: Encoder performance across simulated patients (varying ρ and λ) on the MNIST dataset. A:
Target, HNA encoder, and naive encoder phosphenes for two example digits. B: Heatmaps showing
the log joint loss across ρ and λ for HNA and naive encoders. C: T-SNE clusterings on original
MNIST targets, HNA reconstructed phosphenes, and naive reconstructed phosphenes.

consider ablating the smoothing term (Eq. 6) because it is simply a regularization term. Fig. 6 shows270

the phosphenes produced by HNA trained on the joint, VGG-only, and MAE-only loss.271

The VGG encoder had a test VGG loss of 4% lower than the joint model, but its produced phosphenes272

are oversmoothed and blurry. The MAE encoder had a final test MAE of 9% lower than the joint273

model, but its produced phosphenes are disconnected and low-quality. The joint model had a RA of274

99.0%, the VGG encoder had a RA of 95.9%, and the joint model had a RA of 77.6%275

6 Discussion276

Visual Prostheses We found that HNA is able to produce high-fidelity stimuli from the MNIST277

and COCO datasets that outperform conventional encoding strategies across all tested conditions.278

Importantly, HNA produces phosphenes that are consistent across representations of the same object279

(Fig. 5C), which is critical to allowing prosthesis users to learn to associate certain visual patterns with280

specific objects. On the MNIST task, HNA produced high quality reconstructions, nearly matching281

the targets (Figure 3). On the harder COCO task, HNA significantly outperformed the naive encoder,282

but was still unable to capture all of the detail in the images. In Appendix G, we demonstrate that this283

is largely due to the implant’s limited spatial resolution and not a fundamental limitation of HNA.284

Another advantage of the HNA is that it can be trained to predict stimuli across a wide range of285

patient-specific parameter values ϕ, whereas the conventional naive encoder works well only for286

small values of ρ and λ. This may be one reason why the naive encoding strategy has been shown to287

lead to substantial individual differences in visual outcomes [18, 57]. Our results suggest that stimuli288

produced with HNA may be able to reduce at least some amount of this patient-to-patient variability.289
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Figure 6: MNIST images for HNA encoders trained using the joint, VGG-only, and MAE-only loss.

Furthermore, HNA also proved superior to a surrogate forward model. The latter offer an alternative290

when the forward model is computationally expensive or not differentiable. Understandably, any291

inaccuracies in the surrogate model will propagate to the learned encoder during training. However,292

we observed that even for well trained surrogates, the encoder may still learn to exploit the inexact293

surrogate instead of learning to invert the true model (see Appendix A). It is possible that this294

exploitation could be mitigated to some extent by adversarially-robust training techniques [58]. We295

suspect that the surrogate method’s inferior performance here compared to [10] can be explained296

by our larger stimulus search space. Thus, we cannot currently suggest HNA for surrogate forward297

models, unless the forward model is sufficiently simple or has a small stimulus space.298

Deployment HNA encoders must be lightweight enough to be deployed in resource-limited neu-299

roprosthetic environments. Our encoder’s single image inference time was 1.2ms on GPU and300

4ms on CPU. Future work could reduce these numbers through network pruning, mixed precision,301

and architecture search. Low-power Edge AI accelerators (e.g., Intel’s Neural Compute Stick) and302

dedicated neuromorphic hardware (e.g., BrainChip’s Akida SoC) may provide another solution.303

Broader Impacts While our work is presented in the context of visual prostheses, the HNA304

framework may apply to any sensory neuroprosthesis where stimulus selection can be informed by a305

numeric or symbolic forward model. For example, HNA could be used in cochlear implants [3] to306

choose stimuli that result in a desired sound, and in spinal cord implants [15] to find the best way to307

relay neural signals through a damaged section of the spinal cord. Conveniently, the forward models308

required by HNA have already been developed for a range of applications [36–46]. However, HNA309

might not apply to all neural interfaces, such as systems without a clear neural or perceptual target310

(e.g., deep brain stimulation for the treatment of Parkinson’s [59]) or closed-loop systems [16, 60].311

Limitations Despite HNA’s potential, the current implementation has a number of limitations.312

First, as presented the HNA encoder only applies to static targets. Hence dynamic targets must be313

split into individual frames and encoded separately. However, one approach might be to encode entire314

stimulus sequences (instead of frames) that are optimized to reconstruct the dynamic target sequence.315

Second, HNA works best if there is an accurate forward model mapping from stimulus space to316

perception. However, Appendix H shows that HNA may still give benefits over a naive encoding317

even when patient-specific parameters are unknown or mis-specified. In general, if a prosthesis elicits318

similar results across patients, then a non-patient-specific model would suffice.319

Third, the current works deals only with simulated patients. The use of a DNN for stimulus encoding320

in real patients may raise safety concerns. Since we cannot examine the process by which stimuli321

are chosen, it is possible that HNA might produce harmful stimuli that could lead to serious adverse322

events (e.g., seizures). However, this concern is mitigated by the fact that most neuroprostheses are323

equipped with firmware responsible for ensuring stimuli stay within FDA-approved safety limits.324

7 Conclusion325

In summary, this paper proposes a hybrid autoencoder structure as a general framework for stimulus326

optimization in sensory neuroprostheses and, as a proof of concept, demonstrates its utility on the327

prominent example of visual neuroprostheses, drastically outperforming conventional encoding328

strategies. This may prove a promising solution for a variety of neuroprosthetic technologies.329
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Appendix568

A Surrogate Model569

This section covers specific implementation details about the surrogate model as well as observations570

on its performance.571

A.1 Implementation Details572

Dataset To create training data for the surrogate model f̂ϕ, we used the phosphene model described573

in [23] and implemented in pulse2percept v0.8 [61]. 50, 000 stimuli were created by first selecting574

a number of electrodes to stimulate between 1 and 30 randomly chosen electrodes, then randomly575

selecting an amplitude between 1 and 10 (specified as a multiple of the assumed threshold current)576

and frequency between 1 and 200 Hz for each electrode. In addition, between 10 and 100 electrodes577

were chosen to act as “noise” electrodes, where either amplitude or frequency was given a nonzero578

value, but not both. The purpose of these electrodes was for the surrogate model to learn that579

both a nonzero amplitude and a nonzero frequency are required to produce a visible percept. We580

used an 80-20 train-test split. As the surrogate model is highly dependent on patient-specific581

parameters ϕ, we generated new data and fit a separate surrogate for each of the following ϕ:582

((ρ, λ) ∈ {(150, 100), (150, 1500), (800, 100), (800, 1500)}).583

Network Architecture The surrogate model f̂ϕ used a fully-connected architecture. The input to584

the model was a stimulus matrix s ∈ Rnex3
≥0 , which was identical to the input to f . The stimulus585

matrix was split into amplitude and frequency components (pulse duration was not used due to586

poor model performance), which were fed through a FC layer. The outputs of both FC layers were587

concatenated and fed through another FC layer. Concurrently, the model computed the element-wise588

product of the amplitude and frequency components and passed it through a separate FC layer. The589

outputs of the previous two layers were then concatenated and fed through a final FC layer with590

output size 49× 49.591

The model was trained for 45 epochs using AdamW [62] optimizer and MAE loss.592

A.2 Approximating the Forward Model593

The surrogate model was able to accurately approximate the true phosphene model f . Table 2 shows594

MAE over the validation set (10, 000 percepts) for all 4 trained f̂ϕ. Visually, the predicted percepts595

were nearly identical to the ground truth.596

Table 2: Surrogate model performance

ϕ ρ = 150 λ = 100 ρ = 150 λ = 1500 ρ = 800 λ = 100 ρ = 800 λ = 1500

MAE 0.0119 0.0189 0.0078 0.0115

A.3 Predicted Stimuli597

Despite the low surrogate validation error, training with the surrogate model would often result in the598

encoder suggesting almost adversarial stimuli; that is, stimuli that if fed through the true forward599

model f would lead to drastically different percepts than if fed through the surrogate model f̂ (see600

Fig. A.1). With these adversarial-like stimuli, the encoder appears to be performing well under the601

surrogate model, but performs poorly when the same stimuli are input to the true forward model. We602

identify this as the primary disadvantage of using a surrogate model and resolving this issue remains603

an open research problem for end-to-end training with surrogate methods.604

We noticed several issues caused by the effects of varying stimulus parameters on phosphene605

appearance. For example, increasing amplitude increases size and brightness, while increasing606

frequency increases brightness only. We noticed a larger mismatch between the surrogate and the607

forward model on the extreme ends of the spectrum (e.g. very high frequency, low amplitude),608
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resulting in the encoder settling into a minimum that does not exist in the true forward model. It609

is important to note this disparity appears despite a high training accuracy of the surrogate alone.610

Although these examples are specific to the bionic vision application, we expect surrogate models611

derived to describe other neuromodulation technologies to suffer from similar limitations.612

Figure A.1: The encoder would often suggest stimuli that lead to drastically different percepts when
fed through the surrogate model (f̂ , middle row) as compared to the true forward model (f , bottom
row). Examples are shown for ρ = 800; λ = 100 (left) and ρ = 800 λ = 1500 (right).
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B Hyperparameter Selection613

In this section, we detail how HNA hyperparameters (l, k, α, and β) were chosen.614

VGG Loss To choose the layer of the VGG network to use for VGG loss (l) we performed cross615

validation across a set of candidate layers. Previous studies [50] have shown that the first layer with616

each of the 5 convolutional blocks perform well for neural style transfer. Thus, we choose these as617

our candidate layers. For cross validation, we trained HNA for 50 epochs using each candidate layer.618

The resulting phosphenes are shown in Figure B.1. Using earlier layers, the VGG term performs619

similarly to MAE, and phosphenes are disconnected. We chose layer 5_1 based on its perceived620

ability to capture high-level perceptual differences between images, although layer 4_1 also performs621

similarly.622

Figure B.1: Phosphenes produced by HNA encoder with different layers chosen for VGG loss. Layer
5_1 denotes the first layer within the fifth convolutional block.

Laplacian Smoothing We chose to use a kernel size 5 for the Laplacian filter used to estimate the623

second derivative (k, Eq. 6). The size of the filter controls the scale on which smoothing is applied624

(i.e., smaller filters sizes only encourage continuity within a small local region, whereas larger filters625

encourage continuity within a larger region). Size 5 was chosen because larger filters were observed626

to over-smooth the image, while smaller filters still led to highly disconnected phosphenes.627

Joint Perceptual Metric We performed cross validation to find the best values for α and β. Instead628

of using one value, we found scheduled weighting to be crucial for performance. The scheduler629

incrementally increased the weight of the VGG loss (β) from 0 while simultaneously decreasing the630

initially high weight on the smoothing constraint (α). This was motivated by the observation that the631

VGG loss performed poorly during early iterations when the predicted phosphene was near-random.632

Under this scheduled weighting strategy, the loss is dominated early on by the MAE and smoothing633

terms. This encourages the the model to just output reasonable encodings. As training progresses, the634

predicted phosphenes become higher quality, causing the VGG loss to perform better, and thus the635

smoothing term is no longer as important.636

Additionally, we found it beneficial to temporarily decrease the learning rate by a factor of 10 for a637

short ’warm-up’ duration following each increase in β, before resetting to 50% of the prior learning638

rate. This results in the learning rate gradually decreasing throughout training by a factor of around639

100. Throughout the paper, we use α = 0 and β = 0.00008 for comparisons of loss values.640
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C COCO Dataset641

For the COCO task (Section 5.2), we used subset of images from the MS-COCO dataset [54]. MS-642

COCO was chosen due to its selection of common household objects relevant to the daily life of643

prosthesis users, as well as availability of ground-truth segmentation masks. To select the images644

suitable for prosthetic vision, we filtered out images according to the following criteria:645

1. Too cluttered. Any image with greater than 15 total objects was removed. Removed: 15566646

2. Select chosen objects. Any image that did not have at least 1 object from the selected categories647

that was larger than 4% of the total image was removed. Removed: 42289648

3. Too many. Any image with greater than 5 objects meeting criteria 2 was removed. Removed:649

1017650

4. Too dim. Any objects in the image with average pixel brightness less than 50 were discarded. If651

this resulted in an image having 0 remaining objects, the image was removed. Removed: 434652

Figure C.1: Number of images (left) or instances (right) of each category in the processed COCO
dataset.

This resulted in a total of 47,532 training images and 11,883 test images (80-20 train-test split). The653

objects in the remaining images were segmented out using the ground-truth segmentation masks,654

resized to (49, 49), and converted to grayscale. The distributions of classes used is shown in Figure655

C.1.656
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D Predicted Stimuli657

Here, we directly examine the stimuli resulting from HNA and naive encoders. Stimuli and their658

resulting phosphenes for example images from the test set are shown in Figure D.1. The naive encoder659

produces stimuli with constant frequency (20 Hz) and pulse duration (0.45 ms), which are not shown.660

We make the following observations about the predicted stimuli:661

• Both encoders activate electrodes corresponding to the shape of the target image. In naive stimuli,662

the amplitude directly corresponds to the pixel brightness. In HNA stimuli, the distributions of663

amplitude, frequency, and pulse duration across the electrodes is more complex and harder to664

characterize, but lead to higher-quality phosphenes.665

• HNA uses amplitudes inversely proportional to ρ.666

• For small ρ, HNA primarily uses amplitude to control brightness. For large ρ, HNA primarily667

uses frequency to modulate brightness, keeping amplitudes low to limit phosphene size.668

• HNA uses small pulse durations to create lines parallel to the underlying axon NFB (i.e., it669

utilizes the streaked phosphenes to its advantage), and large pulse durations to create lines670

perpendicular to the underlying NFB. In other words, HNA was able to exploit application-671

specific (i.e., neuroanatomical) information that is baked into the forward model.672

• On average, HNA uses more electrodes, larger frequencies and pulse durations, and smaller673

amplitudes than the naive encoder. A large active electrode count and high pulse durations may674

not be desirable for some prostheses, due to tissue activation and frame rate limits. We found675

that it was easy to constrain these parameters using regularization on the output stimuli, at the676

cost of slightly decreased performance.677

Figure D.1: Top: Example MNIST target images, and the phosphenes produced by HNA and naive
encoders, encoded at various ρ and λ values. Center: The stimuli corresponding to the HNA
phosphenes. From top to bottom, stimulus frequency (Hz), amplitude (xTh), and pulse duration (ms)
are shown. The number of ’active’ electrodes stimulated above threshold levels is given below each
stimuli. Bottom: Stimuli corresponding to the naive phosphenes.

19



E COCO Patient-to-Patient Variations678

We repeated the analysis presented in Section 5.3 for the COCO dataset. Figure E.1A shows two679

example COCO images, encoded by both HNA and the naive encoder, across varying ρ and λ680

values. The heatmaps in Figure E.1B show the log of the joint perceptual loss across simulated681

patients, for both the naive and HNA encoders. To measure phosphene consistency, we performed682

T-SNE clustering on a subset of the COCO images which have only 1 object. Unfortunately, T-SNE683

clustering of the ground-truth COCO images did not form groups corresponding to the object types684

(Figure E.1C), suggesting that the representation of object instances vary drastically across COCO685

images. Therefore, it was not meaningful to repeat the analysis presented in Fig. 5C.686

Similar to the MNIST results presented in Section 5.3, HNA produced higher-quality representations687

than the naive encoder, resulting in a lower joint loss for every simulated patient. HNA performed688

consistently well across all simulated patients (Figure E.1B), with a small increase in loss for small ρ689

(< 100). Similar to MNIST, the naive encoder only performs well for patients with a mid-to-low ρ690

(≈ 200) and low λ.691

Figure E.1: COCO Encoder performance across simulated patients (varying ρ and λ). A: Phosphenes
produced by HNA and Naive encoders of two example images. B: Heatmaps showing the log joint
loss across ρ and λ for HNA and naive encoders. C. Ground-truth COCO images cannot be clustered
using T-SNE into groups corresponding to the object types. The clustering was performed on COCO
images that only contained one object.
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F Modeling Other Patient-to-Patient Variations692

Previously, results were presented across patient-specific parameters ρ and λ, because these have693

the greatest impact on phosphene appearance. However, the forward model has a number of other694

patient-specific parameters, which HNA is also able to adapt to. For full details on all parameters of695

the forward model, see [23]. Out of the remaining parameters, a2, a3, and a5 are the most impactful696

on phosphene appearance. a2 and a3 modulate how much the brightness contribution from each697

electrode scales with increasing amplitude and frequency, respectively. a5 locally scales the global698

radial current spread ρ based on each electrodes amplitude. Figure F.1 (left) illustrates the effect of699

these parameters on phosphene appearance.700

Figure F.1 compares HNA to naive encoder performance across a2, a3, and a5. The ranges for these701

parameters are based on values empirically observed in retinal prosthesis users [23]. HNA produces702

relatively consistent phosphenes, and outperforms the naive encoder across all conditions.703

Figure F.1: Left: Examples of how a2, a3, and a5 affect single-electrode phosphenes. a2 modulates
local brightness scaling with increasing amplitude, a3 modulates local brightness scaling with increas-
ing frequency, and a5 modulates local size scaling with increasing amplitude. Center: Phosphenes
predicted with HNA and naive encoders for varying a2, a3, and a5, increasing left to right. Right:
Plot showing the joint loss across a2, a3, and a5 for HNA (solid) and naive encoder (dashed line).
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G Simulating Higher-Resolution Implants704

On the COCO task, HNA significantly outperformed the naive encoder, but was still unable to capture705

all of the detail in the images. Two of the main reasons for this are the limited spatial resolution of the706

implant and the patient-specific distortions from the forward model. Here, we present results from707

HNAs trained on implants of higher resolution, at small ρ and λ. The chosen implants are illustrated708

in Figure G.1A. For a fair comparison, each HNA was trained for only 50 epochs.709

Phosphenes resulting from the HNA trained on the different implants are shown in Figure G.1C, and710

the losses across implants is plotted in Figure G.1B. As implant resolution increases, the phosphenes711

look increasingly similar to the ground truth, and small details (e.g. facial details, textures) start to712

emerge.713

Thus, HNAs initial failure to capture high-frequency details in the image appears to be an application-714

specific limitation for visual prostheses more so than a limitation of the HNA framework. For visual715

prostheses, learning to reconstruct the high-frequency features of complex images despite distortions716

and limited implant resolution remains an open problem.717

Figure G.1: A: The 4 different implants compared. The main text uses the 15× 15 implant. B: The
joint perceptual loss of HNAs trained on the different implants after 50 epochs. C: Example images
showing the reconstructed phosphenes using each implant
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H Mis-Specified Patient-Specific Parameters718

Due to noisy or limited patient data, there may be some uncertainty in the measured value of the719

patient-specific parameters ϕ. Therefore, we conducted an analysis of the consequences of incorrect720

patient-specific parameters on the encodings produced by HNA. Note that the true patient-specific721

parameters are not needed during training, so incorrect ϕ will only affect evaluation. A ’mismatch’722

HNA model was created, where the forward model decoder used the true patient-specific parameters723

ϕ, and the encoder used another set of patient-specific parameters ϕ′.724

In the first experiment, ϕ′ was sampled from a uniform random distribution (we again focus on only ρ725

and λ). The original HNA encoder, naive encoder, and mismatch HNA encoder with random ϕ′ were726

evaluated on the MNIST test set. HNA achieved a joint loss of 0.92, the naive encoder had a joint727

loss of 3.13, and the mismatch HNA had a joint loss of 1.35 ± 0.003 (mean ± standard deviation728

across 10 random ϕ′). Thus, even if the true patient-specific parameters are completely unknown, on729

average randomly selecting values will still produce higher-quality encodings than the naive method.730

In a second experiment, we analyzed whether there were any configurations (ϕ - ϕ′ combinations)731

that resulted in a worse encoding than the naive model. For the 90% of true ϕ, the mismatch model732

outperformed the naive model regardless of the chosen ϕ′. However, the naive model performs best at733

ρ = 250 and λ = 200. In Figure H.1A, we hold λ constant at 200 and, for each true ρ, plot the ranges734

of mis-specified ρ′ for which the mismatch HNA still outperforms the naive. Figure H.1B shows a735

similar plot for varying λ, holding ρ constant at 250. Even for the naive model’s ideal patients, HNA736

still outperforms the naive model for a large proportion of mis-specified ρ and λ.737

Figure H.1: Plots showing mis-specified HNA performance relative to the naive encoder for varying
ρ (panel A) and λ (panel B). The dashed line marks the correctly specified model, and shaded area
between the solid lines shows the region where the mis-specified HNA outperforms the naive encoder.
Note that the naive model’s ideal patient was used, with λ fixed at 200 and ρ fixed at 250, respectively.
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