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Figure 1: Retinal implant (‘bionic eye’) for restoring vision to people with visual impairment. A) Light captured by a camera is
transformed into electrical pulses delivered through a microelectrode array to stimulate the retina (adapted with permission
from [39]). B) To create meaningful artificial vision, we explored deep learning–based scene simplification as a preprocessing
strategy for retinal implants (reproduced from doi:10.6084/m9.figshare.13652927 under CC-BY 4.0). As a proof of concept, we
used a neurobiologically inspired computational model to generate realistic predictions of simulated prosthetic vision (SPV),
and asked sighted subjects (i.e., virtual patients) to identify people and cars in a novel SPV dataset of natural outdoor scenes.
In the future, this setup may be used as input to a real retinal implant.

ABSTRACT
Retinal degenerative diseases cause profound visual impairment in
more than 10 million people worldwide, and retinal prostheses are
being developed to restore vision to these individuals. Analogous
to cochlear implants, these devices electrically stimulate surviv-
ing retinal cells to evoke visual percepts (phosphenes). However,
the quality of current prosthetic vision is still rudimentary. Rather
than aiming to restore “natural” vision, there is potential merit in
borrowing state-of-the-art computer vision algorithms as image
processing techniques to maximize the usefulness of prosthetic
vision. Here we combine deep learning–based scene simplification
strategies with a psychophysically validated computational model
of the retina to generate realistic predictions of simulated prosthetic
vision, and measure their ability to support scene understanding
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of sighted subjects (virtual patients) in a variety of outdoor scenar-
ios. We show that object segmentation may better support scene
understanding than models based on visual saliency and monocu-
lar depth estimation. In addition, we highlight the importance of
basing theoretical predictions on biologically realistic models of
phosphene shape. Overall, this work has the potential to drastically
improve the utility of prosthetic vision for people blinded from
retinal degenerative diseases.
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1 INTRODUCTION
Retinal degenerative diseases such as retinitis pigmentosa (RP)

and age-related macular degeneration (ARMD) lead to a gradual
loss of photoreceptors in the eye that may cause profound visual im-
pairment in more than 10 million people worldwide. Analogous to
cochlear implants, retinal neuroprostheses (also known as the bionic
eye, Fig. 1A) aim to restore vision to these individuals by electri-
cally stimulating surviving retinal cells to evoke neuronal responses
that are interpreted by the brain as visual percepts (phosphenes).
Existing devices generally provide an improved ability to local-
ize high-contrast objects, navigate, and perform basic orientation
tasks [2]. Future neural interfaces will likely enable applications
such as controlling complex robotic devices, extending memory, or
augmenting natural senses with artificial inputs [14].

However, despite recent progress in the field, there are still sev-
eral limitations affecting the possibility to provide useful vision in
daily life [8]. Interactions between the device electronics and the
underlying neurophysiology of the retina have been shown to lead
to distortions that can severely limit the quality of the generated
visual experience [7, 15]. Other challenges include how to improve
visual acuity, enlarge the field-of-view, and reduce a complex visual
scene to its most salient components through image processing.

Rather than aiming to restore “natural” vision, there is potential
merit in borrowing computer vision algorithms as preprocessing
techniques to maximize the usefulness of bionic vision. Whereas
edge enhancement and contrast maximization are already routinely
employed by current devices, relatively little work has explored the
extraction of high-level scene information.

To address these challenges, we make three contributions:

(1) We adopt state-of-the-art computer vision algorithms to
explore deep learning–based scene simplification as a pre-
processing strategy for bionic vision.

(2) Importantly, we use an established and psychophysically
validated computational model of bionic vision to generate
realistic predictions of simulated prosthetic vision (SPV).

(3) We systematically evaluate the ability of these algorithms to
support scene understanding with a user study focused on a
novel dataset of natural outdoor scenes.

2 BACKGROUND
Retinal implants are currently the only FDA-approved technol-

ogy to treat blinding degenerative diseases such as RP and ARMD.
Most current devices acquire visual input via an external camera
and perform edge extraction or contrast enhancement via an exter-
nal video processing unit (VPU), before sending the signal through
wireless coils to a microstimulator implanted in the eye or the
brain (see Fig. 1A). This device receives the information, decodes
it and stimulates the visual system with electrical current, ideally
resulting in artificial vision. Two devices are already approved for
commercial use: Argus II (60 electrodes, Second Sight Medical Prod-
ucts, Inc., [26]) and Alpha-IMS (1500 electrodes, Retina Implant AG,
[36]). In addition, PRIMA (378 electrodes, Pixium Vision, [24]) has
started clinical trials, with others to follow shortly [3, 13].

However, a major outstanding challenge in the use of these
devices is translating electrode stimulation into a code that the brain
can understand. A common misconception is that each electrode

in the grid can be thought of as a ‘pixel’ in an image [10, 11, 25,
30, 33], and most retinal implants linearly translate the grayscale
value of a pixel in each video frame to a current amplitude of the
corresponding electrode in the array [26]. To generate a complex
visual experience, the assumption then is that one simply needs to
turn on the right combination of pixels.

In contrast, a growing body of evidence suggests that individual
electrodes do not lead to the perception of isolated, focal spots of
light [7, 12, 15]. Although consistent over time, phosphenes vary
drastically across subjects and electrodes [7, 27] and often fail to
assemble into more complex percepts [31, 41]. Consequently, retinal
implant users do not see a perceptually intelligible world [12].

A recent study demonstrated that the shape of a phosphene
generated by a retinal implant depends on the retinal location of
the stimulating electrode [7]. Because retinal ganglion cell (RGC)
send their axons on highly stereotyped pathways to the optic nerve,
an electrode that stimulates nearby axonal fibers would be expected
to antidromically activate RGC bodies located peripheral to the
point of stimulation, leading to percepts that appear elongated in
the direction of the underlying nerve fiber bundle (NFB) trajectory
(Fig. 2, right). Ref. [7] used a simulated map of NFB in each patient’s
retina to accurately predict phosphene shape, by assuming that an
axon’s sensitivity to electrical stimulation:

(1) decays exponentially with decay constant ρ as a function of
distance from the stimulation site,

(2) decays exponentially with decay constant λ as a function of
distance from the cell body, measured as axon path length.

As can be seen in Fig. 2 (left), electrodes near the horizontal
meridian are predicted to elicit circular percepts, while other elec-
trodes are predicted to produce elongated percepts that will differ
in angle based on whether they fall above or below the horizon-
tal meridian. In addition, the values of ρ and λ dictate the size
and elongation of elicited phosphenes, respectively, which may
drastically affect visual outcomes. Understanding the qualitative
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Figure 2: A simulated map of retinal NFBs (left) can ac-
count for visual percepts (right) elicited by retinal implants
(reprinted with permission from [6]). Left: Electrical stimu-
lation (red circle) of a NFB (black lines) could activate retinal
ganglion cell bodies peripheral to the point of stimulation,
leading to tissue activation (black shaded region) elongated
along the NFB trajectory away from the optic disc (white cir-
cle).Right: The resulting visual percept appears elongated as
well; its shape can be described by two parameters, λ (spatial
extent along the NFB trajectory) and ρ (spatial extent per-
pendicular to the NFB). See Ref. [6] for more information.
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experience associated with retinal implants and finding ways to
improve is therefore indispensable to the development of visual
neuroprostheses and related vision augmentation technologies.

3 RELATEDWORK
Most retinal implants are equipped with an external VPU that is

capable of applying simple image processing techniques to the video
feed in real time. In the near future, these techniques may include
deep learning–based algorithms aimed at improving a patient’s
scene understanding.

Based on this premise, researchers have developed various image
optimization strategies, and assessed their performance by having
sighted observers (i.e., virtual patients) conduct daily visual tasks
under SPV [1, 9, 11, 21, 28, 37]. Simulation allows a wide range
of computer vision systems to be developed and tested without
requiring implanted devices.

SPV studies suggest that one benefit of image processing may be
to provide an importancemapping that can aid scene understanding;
that is, to enhance certain image features or regions of interest, at
the expense of discarding less important or distracting information
[1, 9, 17, 33]. This limited compensationmay be significant to retinal
prosthesis patients carrying out visual tasks in daily life.

One of the most commonly explored strategies is to highlight
visually salient information in the scene. In biologically-inspired
models, visual saliency is often defined as a bottom-up process that
highlights regions whose low-level visual attributes (e.g., color,
contrast, motion) may differ from their immediate surroundings.
Early work used this approach to build a visual saliency map whose
salient regions coincided with the regions gazed at by human sub-
jects when looking at images [29]. More recent research showed
that saliency was able to improve eye-hand coordination [20], ob-
stacle avoidance [35], object detection [40], and object recognition
[21, 38]. However, saliency prediction improved markedly with the
advent of deep learning models, which are commonly trained on hu-
man eye movement data to predict an observer’s fixation locations
while freely-viewing a set of images. The current state-of-the-art in
saliency prediction is DeepGaze II [18], a probabilistic model that
uses transfer learning from VGG-19 pre-trained on the SALICON
dataset. DeepGaze has yet to be applied to the field of bionic vision.

Current retinal prostheses are implanted in only one eye, and
thus are unable to convey binocular depth cues. Previous work has
therefore explored the possibility of obtaining depth information
through additional peripherals, such as an RGB-D sensor, and stud-
ied behavioral performance of virtual patients typically navigating
an obstacle course under SPV. For example, Ref. [30] used depth
cues to generate a simplified representation of the ground to indi-
cate the free space within which virtual patients could safely walk
around. Depth cues were also shown to help avoid nearby obstacles
that are notoriously hard to detect with other computer vision al-
gorithms, such as branches hanging from a tree [23]. Ref. [28] used
depth to increase the contrast of object boundaries and showed that
this method reduced the number of collisions with ground obstacles.
In addition, retinal prosthesis patients were shown to benefit from
distance information provided by a thermal sensor when trying to
avoid nearby obstacles and people [32]. However, recent advances
in deep learning enable the estimation of relative depth from single

monocular images, thereby eliminating the need of external depth
sensors and peripherals. One of the most promising deep neural
networks is monodepth2 [16], which uses a self-supervised method
to estimate per-pixel monocular depth. Deep learning–based depth
estimation has yet to be applied to the field of bionic vision.

Finally, recent advances in semantic segmentation have found ap-
plication in bionic vision to simplify the representation of both out-
door scenes [17] and indoor scenes [33]. The latter study combined
semantic and structural image segmentation to build a schematic
representation of indoor environments, which was then shown to
improve object and room identification in a SPV task [33].

However, a common limitation of all the above studies is that
their prosthetic vision simulation assumed that phosphenes are
small, isolated, independent light sources. It is therefore unclear
how their findings would translate to real retinal prosthesis patients,
whose phosphenes are large, elongated, and often fail to assemble
into more complex percepts [7, 12, 31, 41]. In addition, since the
above algorithmswere developed in isolation and tested on different
behavioral tasks, a side-by-side comparison of their ability to aid
scene understanding is still lacking.

To address these challenges, we used a neurobiologically inspired
computational model of bionic vision to generate realistic predic-
tions of SPV, and applied it to several state-of-the-art computer
vision algorithms that might be used to aid scene understanding.
To allow for a fair comparison between algorithms, we asked vir-
tual patients to make perceptual judgments about natural outdoor
scenes, and assessed their performance using objective metrics as
we systematically varied a number of model parameters.

4 METHODS
Following the workflow outlined in Fig. 1B, we created SPV

videos of various outdoor scenes captured by a head-mounted cam-
era (Section 4.1). We first processed the raw videos with one of four
scene simplification strategies based on state-of-the-art computer
vision algorithms (Section 4.2). We then fed the preprocessed videos
into a prosthetic vision simulator to simulate the artificial vision
likely to be experienced by different retinal prosthesis patients (Sec-
tion 4.3). Example frames of the resulting SPV videos can be seen
in Fig. 3. Finally, we conducted a user study to evaluate how well
the resulting SPV videos could support scene understanding in a
variety of outdoor scenarios (Section 4.4).

4.1 Visual Stimuli
Stimuli consisted of 16 first-person videos (each 5s long) recorded

on the University of California, Santa Barbara (UCSB) campus us-
ing head-mounted Tobii Pro Glasses 2. All videos were recorded
outdoors in broad daylight, and were aimed at capturing scenarios
that are relevant for orientation and mobility of a retinal prosthe-
sis patient (e.g., walking on a sidewalk, crossing a street, strolling
through a park). The final dataset was carefully assembled so as
to uniformly cover a variety of conditions. That is, four videos did
not include any people or cars; four videos had one or more person
present; four videos had one or more cars present; and four videos
had both people and cars present.

The raw dataset is publicly available as part of the Supplementary
Material (see Section 7).
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Figure 3: Example frames of the simulated prosthetic vision (SPV) dataset. A) Example frames containing: neither people nor
cars (N), cars only (C), both cars and people (CP), and people only (P). B) Same example frames after being processed with
different scene simplification strategies (columns) and SPV of a 32 × 32 electrode array with different phosphene sizes and
elongations (rows). Simulations are shown for the original masks (no SPV), small phosphenes with no axonal stimulation
(ρ = 100µm, λ = 0µm), medium-sized phosphenes with intermediate axonal stimulation (ρ = 300µm, λ = 1000µm), and large
phosphenes with strong axonal stimulation (ρ = 500µm, λ = 5000µm). Phosphene size and elongation drastically affect SPV
quality, but previous work often ignored these parameters in their predictions.
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4.2 Scene Simplification Strategies
Stimuli were processed by four different scene simplification

strategies, adapted from state-of-the-art computer vision algorithms.

4.2.1 Highlighting Visually Salient Information. We used DeepGaze
II [18] to highlight visually salient information in the recorded
videos. DeepGaze II produced a saliency map that assigned an
importance value ∈ [0, 1] to each pixel in a given video frame. Im-
portance values were then linearly mapped to stimulus amplitudes
applied to the simulated retinal implant.

4.2.2 Substituting Depth for Intensity. We used a self-supervised
monocular depth estimation model called monodepth2 [16] (specif-
ically the pre-trained mono+stereo_640x192 model) to predict a
per-pixel relative depth map from each frame in the videos. We
first sorted the depth values of all pixels in a frame and removed
all depth values above the 80th percentile (where the 0th and 100th
percentile referred to the nearest and farthest pixels to the viewer,
respectively). We then applied an exponential decay on the depth
values such that the closest pixels had grayscale value 180 and the
farthest pixels had grayscale value 0.

4.2.3 Object Segmentation. To segment objects of interest from
background clutter, we used a combination of the scene parsing
algorithm from the MIT Scene Parsing Benchmark [43, 44] and
an object segmentation algorithm called detectron2 [42]. Given
that all the stimuli were outdoor scenes, we obtained the detected
object binary masks that were labeled as a person, bicycle, car, or
bus for each video frame. If there was no object detected in the
scene, then we only represented the main structural edges from the
scene-parsing algorithm. The scene-parsing algorithm sometimes
produces more than 50 parsed regions from the scene. In order to
produce less clustered output, we only preserve the regions labeled
as roads or sidewalks. For the parsed regions, we then extracted the
structural edges for better visualization in the end. The resulting
binary masks were then linearly mapped to stimulus amplitudes
applied to the simulated retinal implant.

4.2.4 Combining Saliency, Depth, and Segmentation. Recognizing
the complementary qualities of the three algorithms described
above, we wondered whether a combination of saliency, depth,
and object segmentation could further improve scene understand-
ing. While segmentation excels at highlighting objects of interests,
it might miss regions of interest that do not have a clear semantic
label (which would be highlighted by the more bottom-up–driven
saliency detector) or nearby obstacles (which would be highlighted
by the depth algorithm). To arrive at a binary mask of salient ob-
jects, we thresholded the saliency map to retain only the 10% most
salient pixels and combined it with the object segmentation map
using a logical OR. We then scaled the grayscale value of each pixel
in the new binary mask with a quadratic function of depth, similar
to the above: y = − 45

16 (
8

dmax−dmin
x − 16

dmax−dmin
)2 + 180.

4.3 Simulated Prosthetic Vision
The preprocessed videos were then used as input stimuli to

the pulse2percept simulator [5], which provides an open-source
implementation of Ref. [7] (among others). The simulator takes
a downscaled version of the preprocessed image, and interprets

the grayscale value of each pixel in a video frame as a current
amplitude delivered to the simulated retinal implant. However,
pulse2percept describes the output of SPV not as a pixelated image,
but determines the shape of each phosphene based on the retinal
location of the simulated implant as well as model parameters ρ and
λ (see Section 2). As can be seen in (Fig. 2, left), electrodes near the
horizontal meridian were thus predicted to elicit circular percepts,
while other electrodes were predicted to produce elongated percepts
that differed in angle based on whether they fell above or below
the horizontal meridian.

Importantly, ρ and λ seem to vary drastically across patients
[7]. Although the reason for this is not fully understood, it is clear
that the choice of these parameter values may drastically affect
the quality of the generated visual experience. To cover a broad
range of potential visual outcomes, we thus simulated nine different
conditions with ρ = {100, 300, 500} and λ = {0, 1000, 5000}.

To study the effect that the number of electrodes in a retinal
implant has on scene understanding, we simulated three different
retinal implants consisting of 8 × 8, 16 × 16, and 32 × 32 electrodes
arranged on a rectangular grid. These sizes roughly correspond to
existing and near-future retinal implants.

4.4 Virtual Patients
We recruited 45 sighted undergraduate students (ages 18–21; 31

females, 14 males) from the student pool at UCSB to act as virtual
patients in our experiments. Subjects were asked to watch SPV
videos depicting various outdoor scenes and indicate whether they
believe people and/or cars to be present in the scene. We were pri-
marily interested in investigating their perceptual performance as
a function of the four different scene simplification strategies, three
retinal implant resolutions, and nine combinations of model param-
eters ρ and λ. All experiments were performed under a protocol
approved by the university’s Institutional Review Board.

4.4.1 Experimental Setup and Apparatus. The experiment was set
up using a recent online platform called SimplePhy [19]. All sub-
jects completed the experiment online using a personal laptop or
computer.

We used a between-subjects design where each subject was
randomly assigned to one of the nine model parameter conditions
(ρ ∈ {100, 300, 500} × λ ∈ {0, 1000, 5000}). Each condition was
completed by five different subjects. Within each condition, each
subject completed all 16 videos with the four scene simplification
strategies (depth, saliency, segmentation, combination) and three
electrode grid resolutions (8 × 8, 16 × 16, 32 × 32). Therefore, each
subject completed 192 trials (16 × 4 × 3) in total, which took about
45–60 minutes to finish.

4.4.2 Experimental Task and Procedure. Subjects underwent a short
online practice session consisting of 8 practice trials, where they
were shown original videos from the head-mounted camera along-
side their corresponding SPV videos. An example trial is shown in
Fig. 4. Note that the video sequences used in the practice session
did not appear in the actual experiment. After each video, a new
screen appeared (‘response screen’ in Fig. 4) on which subjects indi-
cated whether they believed the scene contained any people or cars.
Subjects also indicated their confidence on a five-level Likert scale
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Figure 4: Example trial conducted using the SimplePhy online platform [19]. After watching a five-second long video clip
of a simulated prosthetic vision (SPV) outdoor scene, participants had to indicate whether they believe cars and people to
be present in the scene. Participants also indicated their confidence on a five-level Likert scale (1 = not confident at all, 5 =
completely confident).

(1 = not confident at all, 5 = completely confident). Detecting cars
and people is an essential component for orientation & mobility.
Increasing a patient’s ability to detect and recognize moving objects
may prevent them from dangerous situations in real-life scenarios.

4.4.3 Evaluating performance. Perceptual performancewas assessed
using the sensitivity index (d ′, “d-prime”), which is a dimensionless
statistic from signal detection theory that can be used to measure a
participant’s perceptual sensitivity [34]:

d ′ = Z (hit rate) − Z (false discovery rate), (1)

where the function Z (p), with p ∈ [0, 1], is the inverse of the cu-
mulative distribution function of the Gaussian distribution. Here,
the hit rate was calculated from the number of trials in which a
participant correctly identified people or cars to be present, and
the false-discovery rate (FDR) was calculated from the number of
trials in which a participant indicated to see either people or cars,
although none of them were present. A higher d ′ indicates better
ability to discriminate between trials in which a target is present
(signal) and trials in which a target is absent (noise).d ′ = 0 indicates
that a participant is performing at chance levels.

We used bootstrapping to test for statistical significance. Ten
thousand bootstrap re-samples were used to estimatewithin-subject
and between-subject differences. All p values were corrected using
FDR to control the probability of incorrectly rejecting the null
hypotheses when doing multiple comparisons [22].

For the sake of completion, perceptual performance was also
evaluated on four common statistical indicators: accuracy (number
of correct predictions), precision (number of correct predictions
divided by the number of all trials containing either people or cars),
recall (number of correct predictions divided by the number of all
trials that should have been identified as containing either people
or cars), and the F1 score (harmonic mean of the precision and
recall). Note that some of these are part of d ′.

5 RESULTS
5.1 Effect of Scene Simplification Strategy on

Perceptual Performance
Fig. 5 shows the perceptual performance of virtual patients as a

function of the different scene simplification strategies. Subjects per-
formed best using the segmentation algorithm (d ′ : µ = 1.13,σ =
1.01). Performance based on saliency (d ′: µ = 0.07, standard devia-
tion σ = 0.66,p < 0.001), depth (d ′ : µ = 0.29,σ = 0.66,p < 0.001),
and combination (d ′ : µ = 1.01,σ = 0.91,p < 0.05) was sig-
nificantly worse. Saliency performed worse, followed by depth
(p < 0.01) and the combination algorithm (p < 0.001). Interestingly,
the combination algorithm was not able to benefit from the comple-
mentary information contributed by the individual saliency, depth,
and segmentation algorithms.

These findings are further corroborated by other objective mea-
sures such as accuracy, precision, and recall (see Table 1) that reveal
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Figure 5: Effect of Scene Simplification Strategy. The p val-
ues are corrected using FDR, *<.05, **<.01, ***<.001. The error
bars show the 95% confidence interval.

Condition Accuracy Precision Recall F1
Saliency 0.51 0.53 0.46 0.46
Depth 0.54 0.56 0.56 0.53

Segmentation 0.68 0.73 0.63 0.68
Combination 0.66 0.72 0.62 0.67

Table 1: Virtual patient’s ability to identify people and cars
in outdoor scenes using different scene simplification strate-
gies (bold: best overall).

object segmentation as the most beneficial scene simplification
strategy.

Subjects’ confidence ratings in the segmentation condition (µ =
3.02,σ = 1.10) and combination condition (µ = 2.96,σ = 1.08) were
both significantly higher than the those in the saliency condition
(µ = 2.65,σ = 1.12) and the depth condition (µ = 2.68σ = 1.07; all
p < 0.001). No difference between saliency and depth condition
was found (p = 0.09).

5.2 Effect of Phosphene Size and Elongation on
Perceptual Performance

Fig. 6 shows the perceptual performance of virtual patients as
a function of phosphene size (ρ) and elongation (λ). As expected,
smaller phosphenes led to better perceptual performance, with
ρ = 100µm scoring significantly better (d ′ : µ = 0.81,σ = 1.02)
than ρ = 300µm (d ′ : µ = 0.6,σ = 0.89,p = 0.03) and ρ = 500µm
(d ′ : µ = 0.52,σ = 0.96,p = 0.02). No significant difference in d ′

was found between the conditions with ρ = 300µm and ρ = 500µm
(p = 0.28).

A similar trend was evident with respect to phosphene elonga-
tion. Here, λ = 0 indicated circular phosphenes, similar to the SPV
studies described in Section 3, and led to similar performance as

Figure 6: Sensitivity index (d ′) as a function of phosphene
width (ρ) and length (λ). The p values were corrected using
FDR: * p < .05, ** p < .01, *** p < .001. The error bars show
the 95% confidence interval.

Figure 7: Sensitivity index (d ′) for each tested combination
of phosphene width (ρ) and length (λ).The p values are cor-
rected using FDR, *<.05, **<.01, ***<.001. The error bars show
the 95% confidence interval.

ρ (µm) λ (µm) Accuracy Precision Recall F1
100 0 0.64 0.69 0.53 0.56

1000 0.59 0.58 0.70 0.62
5000 0.62 0.68 0.63 0.60

300 0 0.59 0.61 0.62 0.58
1000 0.62 0.63 0.58 0.58
5000 0.57 0.58 0.56 0.55

500 0 0.60 0.60 0.63 0.59
1000 0.58 0.56 0.66 0.59
5000 0.57 0.55 0.66 0.59

Table 2: Virtual patient’s ability to identify people and cars
in outdoor scenes as a function of phosphene size (ρ) and
elongation (λ; bold: best in box, italics: best overall).

ρ = 100µm (d ′ : µ = 0.75,σ = 0.99). And while there was a trend
evident indicating that more elongated phosphenes may lead to
poorer perceptual performance, this trend did not reach statisti-
cal significance (λ = 1000µm,d ′ : µ = 0.63,σ = 0.98,p > 0.05;
λ = 5000µm,d ′ : µ = 0.53,σ = 0.91,p > 0.05).
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Figure 8: Sensitivity index (d ′) as a function of electrode
grid size. The p values are corrected using FDR, *<.05, **<.01,
***<.001. The error bars show the 95% confidence interval.

Resolution Accuracy Precision Recall F1
8×8 0.57 0.59 0.57 0.54

16×16 0.61 0.62 0.64 0.61
32×32 0.61 0.62 0.65 0.61

Table 3: Virtual patient’s ability to identify people and cars
in outdoor scenes as a function of electrode grid size (bold:
best overall).

This trend could later be confirmed by investigating d ′ across
all nine model parameter conditions (see Fig. 7). Here we found a
clear decreasing trend in d ′ as phosphene size(ρ) and phosphene
elongation(λ) increased. However, notice that d ′ was positive in all
conditions, indicating that subjects performed better than chance
even when phosphenes were unusually large and elongated.

Similar patterns were found in all the other behavioral perfor-
mance measurements (see Table 2). Overall, the highest accuracy,
precision, recall, and F1 scores (italics) were achieved with the
smallest tested phosphene size (ρ = 100µm), but not necessarily
with the shortest phosphene length.

Unfortunately, the subjects’ confidence ratings across conditions
with different phosphene sizes (ρ) and phosphene elongations (λ)
did not show any significant difference (ρ = 100 : µ = 2.74,σ =
1.19; ρ = 300 : µ = 2.95,σ = 1.07; ρ = 500 : µ = 2.80,σ = 1.04;
λ = 0 : µ = 2.60,σ = 1.14; λ = 1000 : µ = 3.18,σ = 1.14;
λ = 5000 : µ = 2.71,σ = .93, all p > .05).

5.3 Effect of Electrode Grid Size on Perceptual
Performance

Fig. 8 shows the perceptual performance of virtual patients as a
function of electrode grid size. As expected, performance improved
as the number of electrodes in the array was increased from 8 × 8
(d ′ : µ = 0.47,σ = 0.87) to 16 × 16 (d ′ : µ = 0.72,σ = 0.93,p <

0.001). However, further increasing the number of electrodes to
32 × 32 did not measurably affect performance (p = 0.37).

This finding is again corroborated by accuracy, precision, recall,
and F1 scores (Table 3), indicating virtually identical performance
for 16 × 16 and 32 × 32.

Again, no significant difference in confidence ratings was found
for different electrode array resolution (8 × 8 : µ = 2.74,σ =
1.12; 16 × 16 : µ = 2.85,σ = 1.09; 32 × 32 : µ = 2.89,σ = 1.10, all
p > 0.05).

6 DISCUSSION
6.1 Object Segmentation May Support Scene

Understanding
The present study provides the first side-by-side comparison

of several deep learning–based scene simplification strategies for
bionic vision. Considering a number of relevant implant configu-
rations in combination with a psychophysically validated model
of SPV, we identified object segmentation as the most promising
image processing strategy to support outdoor scene understanding
of virtual patients (see Fig. 5 and Table 1). This finding is consis-
tent with recent studies indicating the potential utility of semantic
segmentation for bionic vision [17, 33].

Object segmentation compared favorably with two other scene
simplification strategies: based on visual saliency and monocular
depth estimation. Whereas the saliency model struggled with the
lighting conditions of the outdoor data set (often highlighting re-
gions of increased contrast, and falling victim to shadows), the
depth model often failed to highlight nearby obstacles. However,
these models may prove their value in less structured test environ-
ments, where performance is less focused on semantic labeling and
more concerned with the decluttering of complex scenes or the
avoidance of nearby obstacles.

6.2 Increased Phosphene Size Impedes
Perceptual Performance

To the best of our knowledge, this study is also the first to study
SPV with a neurobiologically inspired, psychophysically validated
model of phosphene shape [7]. Whereas previous studies assumed
that phosphenes are isolated, focal spots of light [10, 11, 25, 30, 33],
here we systematically evaluated perceptual performance across
a wide range of common phosphene sizes (ρ) and elongation (λ).
As expected, the best performance was achieved with small, cir-
cular phosphenes (ρ = 100µm, λ = 0; see Fig. 6), and increasing
phosphene size and elongation negatively affected performance
(Fig. 7). This finding suggests that future studies of SPV should take
into account realistic phosphene shape when making predictions
and drawing conclusions.

However, it is worth mentioning that the sensitivity index (d ′)
remained positive in all tested conditions, indicating that subjects
performed better than chance even when phosphenes were unusu-
ally large and elongated. This result suggests that all tested scene
simplification strategies enabled the virtual patients to perform
above chance levels, no matter how degraded the SPV quality.
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6.3 Increasing the Number of Electrodes Does
Not Necessarily Improve Performance

As expected, perceptual performance improved as the size of the
electrode grid was increased from 8× 8 to 16× 16. However, further
increasing the number of electrodes to 32 × 32 did not measurably
affect performance. This result is consistent with previous literature
suggesting that number of electrodes is not the limiting factor in
retinal implants [4, 8].

6.4 Limitations and Future Work
Although the present results demonstrate the utility of deep

learning–based scene simplification for bionic vision, there are a
number of limitations that should be addressed in future work.

First, in an effort to focus on scenes important for orientation
and mobility, we limited our dataset to outdoor scenes. However,
it would also be valuable to evaluate the performance of different
scene simplification strategies on indoor scenarios. Because indoor
scenes have different layouts and types of objects, the algorithms
studied here might have different performances compared to out-
door scenes. For example, the saliency model might perform better
in highlighting salient regions without the interference of light and
shadow contrasts.

Second, to keep the perceptual judgments amenable to quan-
titative performance measures, we limited the current study to a
simple detection task involving common semantic object categories
(i.e., people and cars). This might explain the superior performance
of the semantic segmentation algorithm, which operates with se-
mantic labels. In contrast, the depth and saliency algorithms might
prove more valuable when applied to open-ended navigation tasks.
In the future, we plan to conduct such SPV studies in immersive
virtual reality (VR) to gain more comprehensive insight into the
behavioral performance of virtual patients.

Third, the present study should be understood as a first step
towards the ultimate goal of creating a retinal implant supported by
deep learning–based image preprocessing. Such a device would re-
quire all processing to happen in real time at the edge. One solution
could come in the form of low-power, low-latency neuromorphic
hardware coupled with an event-based vision sensor. Future it-
erations of this work may include end-to-end training of scene
simplification strategies fitted to a specific implant technology or
even an individual patient. Overall this work has the potential
to drastically improve the utility of prosthetic vision for people
blinded from retinal degenerative diseases.

7 DATA AVAILABILITY
All raw video sequences (original and preprocessed) are available
on the Open Science Framework (https://osf.io/s2udz). SPV models
were based on the pulse2percept Python package [5]. Code used to
implement the scene simplification strategies is available on GitHub
(https://github.com/bionicvisionlab/2021-han-scene-simplification,
v0.1).

ACKNOWLEDGMENTS
This work was partially supported by the National Institutes of
Health (NIH R00 EY-029329 to MB). We would like to thank Yaoyi
Bai and Sikun Lin for their contribution to an earlier version of the

depth algorithm, and Asa Young for collecting the video stimuli.
We would also like to thank Dr. Miguel Lago for technical support
with regards to the SimplePhy [19] online platform.

REFERENCES
[1] W. I. Al-Atabany, T. Tong, and P. A. Degenaar. 2010. Improved content aware

scene retargeting for retinitis pigmentosa patients. Biomed Eng Online 9 (Sept.
2010), 52. https://doi.org/10.1186/1475-925X-9-52

[2] Lauren N. Ayton, Nick Barnes, Gislin Dagnelie, Takashi Fujikado, Georges Goetz,
Ralf Hornig, Bryan W. Jones, Mahiul M. K. Muqit, Daniel L. Rathbun, Katarina
Stingl, James D. Weiland, and Matthew A. Petoe. 2020. An update on retinal
prostheses. Clinical Neurophysiology 131, 6 (June 2020), 1383–1398. https:
//doi.org/10.1016/j.clinph.2019.11.029

[3] Lauren N. Ayton, Peter J. Blamey, Robyn H. Guymer, Chi D. Luu, David A. X.
Nayagam, Nicholas C. Sinclair, Mohit N. Shivdasani, Jonathan Yeoh, Mark F.
McCombe, Robert J. Briggs, Nicholas L. Opie, Joel Villalobos, Peter N. Dimitrov,
Mary Varsamidis, Matthew A. Petoe, Chris D. McCarthy, Janine G. Walker, Nick
Barnes, Anthony N. Burkitt, Chris E. Williams, Robert K. Shepherd, Penelope J.
Allen, and for the Bionic Vision Australia Research Consortium. 2014. First-in-
Human Trial of a Novel Suprachoroidal Retinal Prosthesis. PLOS ONE 9, 12 (Dec.
2014), e115239. https://doi.org/10.1371/journal.pone.0115239 Publisher: Public
Library of Science.

[4] Matthew R. Behrend, Ashish K. Ahuja, Mark S. Humayun, Robert H. Chow, and
James D. Weiland. 2011. Resolution of the Epiretinal Prosthesis is not Limited by
Electrode Size. IEEE Transactions on Neural Systems and Rehabilitation Engineering
19, 4 (Aug. 2011), 436–442. https://doi.org/10.1109/TNSRE.2011.2140132

[5] M. Beyeler, G. M. Boynton, I. Fine, and A. Rokem. 2017. pulse2percept: A Python-
based simulation framework for bionic vision. In Proceedings of the 16th Science
in Python Conference, K. Huff, D. Lippa, D. Niederhut, and M. Pacer (Eds.). 81–88.
https://doi.org/10.25080/shinma-7f4c6e7-00c

[6] Michael Beyeler, Geoffrey M. Boynton, Ione Fine, and Ariel Rokem. 2019. Model-
Based Recommendations for Optimal Surgical Placement of Epiretinal Implants.
In Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
(Lecture Notes in Computer Science), Dinggang Shen, Tianming Liu, Terry M.
Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, and Ali
Khan (Eds.). Springer International Publishing, 394–402. https://doi.org/10.1007/
978-3-030-32254-0_44

[7] Michael Beyeler, Devyani Nanduri, James D. Weiland, Ariel Rokem, Geoffrey M.
Boynton, and Ione Fine. 2019. A model of ganglion axon pathways accounts
for percepts elicited by retinal implants. Scientific Reports 9, 1 (June 2019), 1–16.
https://doi.org/10.1038/s41598-019-45416-4

[8] M. Beyeler, A. Rokem, G. M. Boynton, and I. Fine. 2017. Learning to see again: bio-
logical constraints on cortical plasticity and the implications for sight restoration
technologies. J Neural Eng 14, 5 (June 2017), 051003. https://doi.org/10.1088/1741-
2552/aa795e

[9] Justin R. Boyle, Anthony J. Maeder, andWageehW. Boles. 2008. Region-of-interest
processing for electronic visual prostheses. Journal of Electronic Imaging 17, 1
(Jan. 2008), 013002. https://doi.org/10.1117/1.2841708 Publisher: International
Society for Optics and Photonics.

[10] S. C. Chen, G. J. Suaning, J. W. Morley, and N. H. Lovell. 2009. Simulating
prosthetic vision: I. Visual models of phosphenes. Vision Research 49, 12 (June
2009), 1493–506.

[11] G. Dagnelie, P. Keane, V. Narla, L. Yang, J. Weiland, and M. Humayun. 2007. Real
and virtual mobility performance in simulated prosthetic vision. J Neural Eng 4,
1 (March 2007), S92–101. https://doi.org/10.1088/1741-2560/4/1/S11

[12] Cordelia Erickson-Davis and Helma Korzybska. 2020. What do blind people
“see” with retinal prostheses? Observations and qualitative reports of epiretinal
implant users. bioRxiv (Feb. 2020), 2020.02.03.932905. https://doi.org/10.1101/
2020.02.03.932905

[13] Laura Ferlauto, Marta Jole Ildelfonsa Airaghi Leccardi, Naïg Aurelia Ludmilla
Chenais, Samuel Charles Antoine Gilliéron, Paola Vagni, Michele Bevilacqua,
Thomas J. Wolfensberger, Kevin Sivula, and Diego Ghezzi. 2018. Design and
validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nature
Communications 9, 1 (March 2018), 1–15. https://doi.org/10.1038/s41467-018-
03386-7

[14] Eduardo Fernandez. 2018. Development of visual Neuroprostheses: trends and
challenges. Bioelectronic Medicine 4, 1 (Aug. 2018), 12. https://doi.org/10.1186/
s42234-018-0013-8

[15] I. Fine and G. M. Boynton. 2015. Pulse trains to percepts: the challenge of creating
a perceptually intelligible world with sight recovery technologies. Philos Trans R
Soc Lond B Biol Sci 370, 1677 (Sept. 2015), 20140208. https://doi.org/10.1098/rstb.
2014.0208

[16] C. Godard, O. M. Aodha, M. Firman, and G. Brostow. 2019. Digging Into Self-
Supervised Monocular Depth Estimation. In 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV). 3827–3837. https://doi.org/10.1109/ICCV.2019.
00393 ISSN: 2380-7504.

53

https://osf.io/s2udz
https://github.com/bionicvisionlab/2021-han-scene-simplification
https://doi.org/10.1186/1475-925X-9-52
https://doi.org/10.1016/j.clinph.2019.11.029
https://doi.org/10.1016/j.clinph.2019.11.029
https://doi.org/10.1371/journal.pone.0115239
https://doi.org/10.1109/TNSRE.2011.2140132
https://doi.org/10.25080/shinma-7f4c6e7-00c
https://doi.org/10.1007/978-3-030-32254-0_44
https://doi.org/10.1007/978-3-030-32254-0_44
https://doi.org/10.1038/s41598-019-45416-4
https://doi.org/10.1088/1741-2552/aa795e
https://doi.org/10.1088/1741-2552/aa795e
https://doi.org/10.1117/1.2841708
https://doi.org/10.1088/1741-2560/4/1/S11
https://doi.org/10.1101/2020.02.03.932905
https://doi.org/10.1101/2020.02.03.932905
https://doi.org/10.1038/s41467-018-03386-7
https://doi.org/10.1038/s41467-018-03386-7
https://doi.org/10.1186/s42234-018-0013-8
https://doi.org/10.1186/s42234-018-0013-8
https://doi.org/10.1098/rstb.2014.0208
https://doi.org/10.1098/rstb.2014.0208
https://doi.org/10.1109/ICCV.2019.00393
https://doi.org/10.1109/ICCV.2019.00393


AHs ’21, February 22–24, 2021, Rovaniemi, Finland Han et al.

[17] Lachlan Horne, Jose Alvarez, Chris McCarthy, Mathieu Salzmann, and Nick
Barnes. 2016. Semantic labeling for prosthetic vision. Computer Vision and Image
Understanding 149 (Aug. 2016), 113–125. https://doi.org/10.1016/j.cviu.2016.02.
015

[18] Matthias Kümmerer, Thomas S. A. Wallis, and Matthias Bethge. 2016. DeepGaze
II: Reading fixations from deep features trained on object recognition.
arXiv:1610.01563 [cs, q-bio, stat] (Oct. 2016). http://arxiv.org/abs/1610.01563
arXiv: 1610.01563.

[19] Lago, Miguel. 2021. SimplePhy: An open-source tool for quick online perception
experiments. Behavior Research Methods (2021). https://doi.org/10.3758/s13428-
020-01515-z

[20] Heng Li, Tingting Han, JingWang, Zhuofan Lu, Xiaofei Cao, Yao Chen, Liming Li,
Chuanqing Zhou, and Xinyu Chai. 2017. A real-time image optimization strategy
based on global saliency detection for artificial retinal prostheses. Information
Sciences 415, Supplement C (Nov. 2017), 1–18. https://doi.org/10.1016/j.ins.2017.
06.014

[21] Heng Li, Xiaofan Su, Jing Wang, Han Kan, Tingting Han, Yajie Zeng, and Xinyu
Chai. 2018. Image processing strategies based on saliency segmentation for object
recognition under simulated prosthetic vision. Artificial Intelligence in Medicine
84 (Jan. 2018), 64–78. https://doi.org/10.1016/j.artmed.2017.11.001

[22] Junning Li, Yonggang Shi, and Arthur W. Toga. 2015. Controlling False Discovery
Rate in Signal Space for Transformation-Invariant Thresholding of Statistical
Maps. Information processing in medical imaging : proceedings of the ... conference
9123 (July 2015), 125–136. https://doi.org/10.1007/978-3-319-19992-4_10

[23] P. Lieby, N. Barnes, C. McCarthy, Nianjun Liu, H. Dennett, J. G. Walker, V. Botea,
and A. F. Scott. 2011. Substituting depth for intensity and real-time phosphene
rendering: Visual navigation under low vision conditions. In 2011 Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. IEEE,
Boston, MA, 8017–8020. https://doi.org/10.1109/IEMBS.2011.6091977

[24] H. Lorach, G. Goetz, R. Smith, X. Lei, Y. Mandel, T. Kamins, K. Mathieson, P. Huie, J.
Harris, A. Sher, and D. Palanker. 2015. Photovoltaic restoration of sight with high
visual acuity. Nat Med 21, 5 (May 2015), 476–82. https://doi.org/10.1038/nm.3851

[25] Wen Lik Dennis Lui, Damien Browne, Lindsay Kleeman, Tom Drummond, and
Wai Ho Li. 2011. Transformative reality: Augmented reality for visual prostheses.
In 2011 10th IEEE International Symposium on Mixed and Augmented Reality.
253–254. https://doi.org/10.1109/ISMAR.2011.6092402 ISSN: null.

[26] Y. H. Luo and L. da Cruz. 2016. The Argus((R)) II Retinal Prosthesis System. Prog
Retin Eye Res 50 (Jan. 2016), 89–107. https://doi.org/10.1016/j.preteyeres.2015.09.
003

[27] Yvonne H.-L. Luo, Joe Jiangjian Zhong, Monica Clemo, and Lyndon da Cruz. 2016.
Long-term Repeatability and Reproducibility of Phosphene Characteristics in
Chronically Implanted Argus II Retinal Prosthesis Subjects. American Journal of
Ophthalmology 170 (Oct. 2016), 100–109. https://doi.org/10.1016/j.ajo.2016.07.021
Publisher: Elsevier.

[28] Chris McCarthy, Janine G. Walker, Paulette Lieby, Adele Scott, and Nick Barnes.
2014. Mobility and low contrast trip hazard avoidance using augmented depth.
Journal of Neural Engineering 12, 1 (Nov. 2014), 016003. https://doi.org/10.1088/
1741-2560/12/1/016003 Publisher: IOP Publishing.

[29] N. Parikh, L. Itti, and J. Weiland. 2010. Saliency-based image processing for
retinal prostheses. Journal of Neural Engineering 7, 1 (Jan. 2010), 016006. https:
//doi.org/10.1088/1741-2560/7/1/016006 Publisher: IOP Publishing.

[30] Alejandro Perez-Yus, Jesus Bermudez-Cameo, Gonzalo Lopez-Nicolas, and Jose J.
Guerrero. 2017. Depth and Motion Cues With Phosphene Patterns for Pros-
thetic Vision. 1516–1525. http://openaccess.thecvf.com/content_ICCV_2017_
workshops/w22/html/Perez-Yus_Depth_and_Motion_ICCV_2017_paper.html

[31] J. F. Rizzo, J. Wyatt, J. Loewenstein, S. Kelly, and D. Shire. 2003. Perceptual efficacy
of electrical stimulation of human retina with a microelectrode array during
short-term surgical trials. Invest Ophthalmol Vis Sci 44, 12 (Dec. 2003), 5362–9.

[32] Roksana Sadeghi, Arathy Kartha, Michael P. Barry, Paul Gibson, Avi Caspi, Arup
Roy, and Gislin Dagnelie. 2019. Thermal and Distance image filtering improve
independent mobility in Argus II retinal implant. Journal of Vision 19, 15 (Dec.
2019), 23–23. https://doi.org/10.1167/19.15.23 Publisher: The Association for
Research in Vision and Ophthalmology.

[33] Melani Sanchez-Garcia, Ruben Martinez-Cantin, and Josechu J. Guerrero. 2019.
Indoor Scenes Understanding for Visual Prosthesis with Fully Convolutional
Networks. In VISIGRAPP. https://doi.org/10.5220/0007257602180225

[34] A. J. Simpson and M. J. Fitter. 1973. What is the best index of detectability?
Psychological Bulletin 80, 6 (1973), 481–488. https://doi.org/10.1037/h0035203
Place: US Publisher: American Psychological Association.

[35] A. Stacey, Y. Li, and N. Barnes. 2011. A salient information processing system for
bionic eye with application to obstacle avoidance. In 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. 5116–5119.
https://doi.org/10.1109/IEMBS.2011.6091267 ISSN: 1558-4615.

[36] K. Stingl, K. U. Bartz-Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, U.
Greppmaier, S. Hipp, G. Hortdorfer, C. Kernstock, A. Koitschev, A. Kusnyerik, H.
Sachs, A. Schatz, K. T. Stingl, T. Peters, B. Wilhelm, and E. Zrenner. 2013. Artificial
vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc
Biol Sci 280, 1757 (April 2013), 20130077. https://doi.org/10.1098/rspb.2013.0077

[37] Victor Vergnieux, Marc J.-M. Macé, and Christophe Jouffrais. 2017. Simplifica-
tion of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
Artificial Organs 41, 9 (Sept. 2017), 852–861. https://doi.org/10.1111/aor.12868
Publisher: John Wiley & Sons, Ltd.

[38] Jing Wang, Heng Li, Weizhen Fu, Yao Chen, Liming Li, Qing Lyu, Tingting
Han, and Xinyu Chai. 2016. Image Processing Strategies Based on a Visual
Saliency Model for Object Recognition Under Simulated Prosthetic Vision. Ar-
tificial Organs 40, 1 (2016), 94–100. https://doi.org/10.1111/aor.12498 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/aor.12498.

[39] J. D. Weiland and M. S. Humayun. 2005. A biomimetic retinal stimulating array.
IEEE Engineering in Medicine and Biology Magazine 24, 5 (Sept. 2005), 14–21.
https://doi.org/10.1109/MEMB.2005.1511496 Conference Name: IEEE Engineering
in Medicine and Biology Magazine.

[40] J. D.Weiland, N. Parikh, V. Pradeep, and G.Medioni. 2012. Smart image processing
system for retinal prosthesis. In 2012 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. 300–303. https://doi.org/10.1109/
EMBC.2012.6345928 ISSN: 1558-4615.

[41] R. G. H. Wilke, G. Khalili Moghadam, N. H. Lovell, G. J. Suaning, and S. Dokos.
2011. Electric crosstalk impairs spatial resolution of multi-electrode arrays in
retinal implants. Journal of Neural Engineering 8, 4 (June 2011), 046016. https:
//doi.org/10.1088/1741-2560/8/4/046016

[42] Wu, Yuxin, Kirillov, Alexander, Massa, Francisco, Lo, Wan-Yen, and Girshick,
Ross. 2019. Detectron2. https://github.com/facebookresearch/detectron2

[43] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2016. Semantic understanding of scenes through the ade20k dataset.
arXiv preprint arXiv:1608.05442 (2016).

[44] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2017. Scene Parsing through ADE20K Dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

54

https://doi.org/10.1016/j.cviu.2016.02.015
https://doi.org/10.1016/j.cviu.2016.02.015
http://arxiv.org/abs/1610.01563
https://doi.org/10.3758/s13428-020-01515-z
https://doi.org/10.3758/s13428-020-01515-z
https://doi.org/10.1016/j.ins.2017.06.014
https://doi.org/10.1016/j.ins.2017.06.014
https://doi.org/10.1016/j.artmed.2017.11.001
https://doi.org/10.1007/978-3-319-19992-4_10
https://doi.org/10.1109/IEMBS.2011.6091977
https://doi.org/10.1038/nm.3851
https://doi.org/10.1109/ISMAR.2011.6092402
https://doi.org/10.1016/j.preteyeres.2015.09.003
https://doi.org/10.1016/j.preteyeres.2015.09.003
https://doi.org/10.1016/j.ajo.2016.07.021
https://doi.org/10.1088/1741-2560/12/1/016003
https://doi.org/10.1088/1741-2560/12/1/016003
https://doi.org/10.1088/1741-2560/7/1/016006
https://doi.org/10.1088/1741-2560/7/1/016006
http://openaccess.thecvf.com/content_ICCV_2017_workshops/w22/html/Perez-Yus_Depth_and_Motion_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_ICCV_2017_workshops/w22/html/Perez-Yus_Depth_and_Motion_ICCV_2017_paper.html
https://doi.org/10.1167/19.15.23
https://doi.org/10.5220/0007257602180225
https://doi.org/10.1037/h0035203
https://doi.org/10.1109/IEMBS.2011.6091267
https://doi.org/10.1098/rspb.2013.0077
https://doi.org/10.1111/aor.12868
https://doi.org/10.1111/aor.12498
https://doi.org/10.1109/MEMB.2005.1511496
https://doi.org/10.1109/EMBC.2012.6345928
https://doi.org/10.1109/EMBC.2012.6345928
https://doi.org/10.1088/1741-2560/8/4/046016
https://doi.org/10.1088/1741-2560/8/4/046016
https://github.com/facebookresearch/detectron2

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methods
	4.1 Visual Stimuli
	4.2 Scene Simplification Strategies
	4.3 Simulated Prosthetic Vision
	4.4 Virtual Patients

	5 Results
	5.1 Effect of Scene Simplification Strategy on Perceptual Performance
	5.2 Effect of Phosphene Size and Elongation on Perceptual Performance
	5.3 Effect of Electrode Grid Size on Perceptual Performance

	6 Discussion
	6.1 Object Segmentation May Support Scene Understanding
	6.2 Increased Phosphene Size Impedes Perceptual Performance
	6.3 Increasing the Number of Electrodes Does Not Necessarily Improve Performance
	6.4 Limitations and Future Work

	7 Data Availability
	Acknowledgments
	References

