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Abstract— To provide appropriate levels of stimulation, reti-
nal prostheses must be calibrated to an individual’s perceptual
thresholds (‘system fitting’). Nonfunctional electrodes may then
be deactivated to reduce power consumption and improve
visual outcomes. However, thresholds vary drastically not just
across electrodes but also over time, thus calling for a more
flexible electrode deactivation strategy. Here we present an
explainable artificial intelligence (XAI) model fit on a large
longitudinal dataset that can 1) predict at which point in
time the manufacturer chose to deactivate an electrode as a
function of routine clinical measures (‘predictors’) and 2) reveal
which of these predictors were most important. The model
predicted electrode deactivation from clinical data with 60.8%
accuracy. Performance increased to 75.3% with system fitting
data, and to 84% when thresholds from follow-up examinations
were available. The model further identified subject age and
time since blindness onset as important predictors of electrode
deactivation. An accurate XAI model of electrode deactivation
that relies on routine clinical measures may benefit both the
retinal implant and wider neuroprosthetics communities.

I. INTRODUCTION

To provide appropriate levels of stimulation, retinal pros-
theses must be calibrated to each subject’s amount of elec-
trical current needed to elicit visual responses (perceptual
threshold). In the case of the Argus II Retinal Prosthesis
System (Second Sight Medical Products, Inc.) [1], this pro-
cess is part of system fitting, where perceptual thresholds
are combined with electrode impedance measurements to
populate subject-specific lookup tables that determine how
the grayscale values of an image recorded by the external
camera are translated into electrical stimuli. Nonfunctional
electrodes are then deactivated, either because impedance
measurements indicated an open or short circuit, or because
no perceptual threshold below the charge density limit could
be measured. Because this is a time-consuming process (each
electrode requiring ∼ 100 trials of a behavioral detection task
[2]), fitting sessions are thereafter limited to annual checks.

However, perceptual thresholds vary drastically not just
across electrodes but also over time [2]–[5], thus calling for
a more flexible electrode deactivation strategy. Thresholds
often undergo sudden and large fluctuations that can last
several weeks and cannot be explained by gradual changes in
the implant-tissue interface [5]. Whereas the cochlear implant
community has developed electrode deactivation strategies
informed by recent device performance [6]–[8], no such
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strategy exists for retinal implant recipients. Repeated system
fitting would be time-consuming at best and quickly become
infeasible as new retinal prostheses are being developed that
feature thousands of electrodes.

To address these challenges, we developed an explainable
artificial intelligence (XAI) model that could 1) predict at
which point in time an individual Argus II electrode was
deactivated as a function of routinely collected clinical mea-
sures (‘predictors’), and 2) reveal which of these predictors
were most important. Previous studies have focused on linear
models [3], [4], which provide easily interpretable model
parameters, but are often not powerful enough to fit the
data. Machine learning (ML) models based on deep learning
may offer state-of-the-art prediction accuracy, but are ‘black
boxes’ whose predictions are inscrutable, and hence not
actionable in a clinical setting. On the other hand, XAI relies
on ML approaches that can explain why a certain prediction
was made while maintaining high accuracy [9].

II. METHODS

A. Dataset

We analyzed a longitudinal dataset of 5, 496 perceptual
thresholds and electrode impedances measured on 627 elec-
trodes in 12 Argus II patients (Table I; for demographic
information see [3], [10], [11]). The data was collected
from 2007 − 2018 during 285 sessions conducted at 7
different implant centers located across the United States, the
United Kingdom, France, and Switzerland. For all subjects,

TABLE I
PREVALENCE OF ARGUS II ELECTRODE DEACTIVATION

Subjects Data points Sessions Measured Deactivated
electrodes electrodes

SF LT
12-001 841 43 51 1 41
12-004 320 32 43 1 40
12-005 912 31 56 2 5
14-001 260 15 44 2 39
17-002 366 30 52 2 51
51-001 269 19 54 8 44
51-003 243 14 55 16 53
51-009 337 12 54 1 6
52-001 605 24 60 0 0
52-003 435 19 50 4 48
61-004 367 20 57 3 51
71-002 541 69 51 1 41

Total 5496 285 627 43 419
SF: system fitting, LT: life time
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threshold measurements were available for a majority of
the 60 electrodes in the array, measured 14 − 69 times
over the lifetime of the device. Whereas only a handful
electrodes were deactivated during system fitting (labeled
‘SF’ in Table I), most electrodes were at least temporarily
deactivated over the life time of the device (labeled ‘LT’).

A subset of the data was previously collected as part
of the Argus II Feasibility Protocol (Clinical Trial ID:
NCT00407602). Our study, which did not involve human
subjects research, was exempt from IRB approval.

B. Feature Engineering

To prepare the raw data for ML, we combined threshold
and impedance values with clinical data crowd-sourced from
the literature and performed feature engineering. The result-
ing feature correlation matrix is shown in Fig. 1, with each
feature described in Table II and in more detail below.

As some parameters are more easily collected than others,
a major goal of this work is to identify which of the
available parameters are worth collecting for the purpose
of predicting electrode deactivation. We therefore split the
available features into three different categories:

1) Routinely Collected Data: We crowd-sourced public
information about patient history (e.g., age at blindness diag-
nosis, age at implant surgery) from previous studies [3], [10],
[11]. Surgery dates were obtained from Second Sight, and
where not known exactly, were triangulated from the known
dates of the earliest available impedance measurements and
the 3-month follow-up exam. Knowing surgery dates and the
subject’s age at that time allowed us to estimate the birth year
for each subject (±1 year). Based on the above information
and the dates of each testing session we were therefore able
to calculate for each testing session: i) time since surgery,
ii) time since diagnosis, and iii) subject age.

Previous work identified electrode-retina distance as a key
factor affecting thresholds [2]–[4]. Unfortunately, we did not
have access to optical coherence tomography (OCT) images
for all subjects. Instead we followed de Balthasar et al.
[2] to estimate electrode-retina distance from the available
impedance measurements (‘Impedance2Height’ in Table II).

2) System Fitting: Soon after system activation, patients
undergo a system fitting procedure during which electrode
impedances and perceptual thresholds are measured on all
60 electrodes. These values are then used to set several
system parameters, such as the charge density limit and the
largest allowable current. By default, charge density limits
are set to 0.35mCcm−2 per phase for everyday use, and to
1mCcm−2 for lab use, but can be reduced for electrodes that
are particularly sensitive. Analogously, stimulating currents
are limited to 1mA per default, but can be reduced for sensi-
tive electrodes. Electrodes whose impedance value indicate
either a short or open circuit are immediately deactivated.
Thresholds and impedances obtained during system fitting
were only used as features for the training data, not as labels
that the algorithm was supposed to predict.

We engineered several additional features, such as the
fraction of deactivated electrodes, the coefficient of variation

for impedance values measured across all electrodes, and the
false positive rate during threshold measurements (where the
stimulating current was zero but the patient reported seeing
a phosphene). Finally, for each data point in the dataset, we
calculated the time that had passed since system fitting.

3) Follow-Up Examinations: Patients participating in the
Argus II Feasibility Protocol regularly visited their eye
clinic for follow-up exams. We wondered how useful these
more recent threshold and impedance measurements were
for predicting electrode deactivation. Since the time between
sessions varied, we also calculated the time that had passed
since the last examination (‘TimeSinceLast’ in Table II).

C. Explainable Machine Learning Model

We used gradient boosting (XGBoost), a powerful ML
model based on an ensemble of decision trees [12], to
predict electrode deactivation as a function of the model
parameters (‘features’) described above. In this model, a
strong predictor is built from iteratively combining weaker
models (i.e., shallow decision trees). XGBoost has achieved
state-of-the-art results in a variety of practical tasks with
heterogeneous features and complex dependencies. To apply
XGBoost to our longitudinal data, we assumed that each test-
ing session was independent and treated timestamp-related
data (e.g., ‘TestDate’, ‘SubjectTimePostOp‘) as additional
feature attributes.

To determine the relative importance of the different
features for each model prediction, we adopted SHapley
Additive ex-Planations (SHAP) [13]. SHAP is a feature
attribution technique based on the game-theoretically optimal
Shapley values, which determine how to fairly distribute
a ‘payout’ (i.e., the prediction) among model parameters.
SHAP first calculates a (local) feature importance value for
each feature in a decision tree, and then accumulates these
values across all trees in the XGBoost model to yield a global
importance value for each feature.

Model performance was compared against two baselines:
logistic regression (LR) with an L2 penalty and a support
vector machine (SVM) with a linear kernel. Both baseline
models were implemented using scikit-learn (v0.22.2.post1)
[14] and Python 3.6.9.

D. Model Evaluation and Comparison

To allow for a fair comparison between models, we
used a nested leave-one-subject-out cross-validation, where
we repeatedly fit the model to the data from all but one
subject (outer loop). This procedure is equivalent to cal-
culating the Akaike Information Criterion that takes into
account the difference in number of parameters across
models [15]. To tune the various hyperparameters of each
model (LR: C; SVM: gamma; XGBoost: e.g., max depth,
min child weight), we split the training data again using
leave-one-subject-out cross-validation (inner loop).

Model performance was evaluated on five common sta-
tistical indicators: accuracy (number of correct predictions),
precision (number of correctly predicted electrode deacti-
vations divided by the number of all deactivations), recall
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TABLE II
FEATURE DESCRIPTIONS

Feature Description Precision

R
ou

tin
el

y
C

ol
le

ct
ed

Impedance Manufacturer-provided impedance reading at each electrode kΩ

ImpedanceCV Coefficient of variation (ratio of standard deviation to the mean) of impedance values across electrodes float
Impedanc2Height Electrode-retina distance estimated from impedance values [2] µm

ImplantSite Manufacturer-provided implant center ID one-hot
SubjectAge Subject age at time of testing session days
SubjectAgeAtDiagnosis Subject age at first retinitis pigmentosa (RP) diagnosis (i.e., blindness onset) years
SubjectAgeAtSurgery Subject age at implant surgery weeks
SubjectSiteNum Subject ID assigned at implant center (chronological) int
SubjectTimeBlind Time passed between each testing session and blindness onset days
SubjectTimePostOp Time passed between each testing session and implant surgery days
TestDate Date of each testing session days

Sy
st

em
Fi

tti
ng

FirstChargeDensityLimit Electrode-specific charge density limit for standalone and developer modes set during system fitting mC cm−2

FirstElectrodesDead Fraction of deactivated electrodes during system fitting float
FirstFalsePositiveRate False positive rate during system fitting float
FirstImpedance Impedance reading at each electrode during system fitting kΩ

FirstMaxCurrent Maximum current per electrode set during system fitting µA

FirstThreshold Perceptual threshold measured during system fitting µA

TimeSinceFirst Time passed between system fitting and each testing session days

Fo
llo

w
-U

p LastFalsePositiveRate False positive rate during last testing session float
LastImpedance Electrode impedance reading during last testing session kΩ

LastThreshold Electrode threshold measurement during last testing session µA

TimeSinceLast Time passed since last testing session days
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Routinely Collected System Fitting Follow-Up

Fig. 1. Feature correlation matrix: Heatmap of Pearson correlation coefficient for all feature pairs. Note that some timestamp-related features (e.g.,
‘TestDate’, ‘SubjectTimePostOp’) appear highly correlated, which may impede the performance of linear models, but not necessarily tree–based models.
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(number of correctly predicted deactivations divided by the
number of all electrodes that should have been identified as
deactivated), F1 score (harmonic mean of the precision and
recall), and the area under the ROC curve (AUC).

III. RESULTS

The cross-validated classification results are shown in
Table III. Each model was trained on three different feature
splits of the data as described in Table II: 1) relying solely on
routine clinical measures (labeled ‘Routine’), 2) relying on
routine measures and system fitting (‘Fitting’), and 3) relying
on routine measures, system fitting, and data from follow-up
examinations (‘Follow-up’).

Gradient boosting outperformed the two baseline models
in all cases. Interestingly, without ever measuring perceptual
thresholds (‘Routine’), XGBoost was able to predict future
electrode deactivations with 60.8% accuracy. In this case, the
model’s decisions relied on initial impedance measurements
as well as clinical information about the subject’s age, time
since blindness onset, and time since device implantation.
By incorporating threshold measurements as well as other
parameters typically collected during system fitting, per-
formance increased to 75.3%. When additional measure-
ments from follow-up examinations were included, XGBoost
reached its peak performance (84% accuracy, 0.903 AUC).

The SHAP values for the ten most important features in the
dataset are shown in Fig. 2. In this plot, each data point is a
prediction of electrode deactivation from the held-out cross-
validation fold (test set). SHAP values indicate each feature’s
contribution to the model’s decision, with positive values
indicating that a feature pushed the model towards predicting
deactivation, and negative values pushing the model away
from predicting deactivation.

Of all the routine clinical measures (top panel in Fig. 2),
subject age at diagnosis, impedance, and an estimate of
retinal-electrode distance proved the most important. Other
influential factors included time since blindness onset, time
since device implantation, and subject age.

Threshold measurements and related electrode-specific
settings (e.g., maximum current, charge density limit) typ-
ically obtained during system fitting proved to be even more
important (middle panel in Fig. 2). The higher the initial
threshold, the more likely an electrode was to be deactivated
in the future. The model also identified the overall number of
electrodes deactivated during system fitting as an important
predictor of future deactivations.

Not surprisingly, when data from follow-up examinations
was considered as well (bottom panel in Fig. 2), the most
recently obtained threshold measurement proved to be the
most important feature. This is consistent with the finding
that threshold measurements often go through large fluctua-
tion over time [5], which cannot be predicted from an initial
threshold measurement during system fitting.

In all three scenarios, parameters such as subject age and
time since blindness onset proved to be highly predictive of
future electrode deactivations.

TABLE III
CROSS-VALIDATED CLASSIFICATION RESULTS

Method Accuracy Precision Recall F1 AUC

R
ou

tin
e XGBoost 0.608 0.334 0.547 0.415 0.547

SVM 0.348 0.249 0.776 0.377 0.497
LR 0.483 0.264 0.579 0.363 0.485

Fi
tti

ng

XGBoost 0.753 0.507 0.932 0.657 0.840
SVM 0.638 0.380 0.677 0.488 0.705
LR 0.681 0.430 0.782 0.555 0.799

Fo
llo

w
-u

p XGBoost 0.840 0.634 0.873 0.734 0.903
SVM 0.830 0.619 0.853 0.718 0.897
LR 0.826 0.614 0.846 0.711 0.897

SVM: support vector machine, LR: logistic regression
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Fig. 2. Force plot of SHapley Additive ex-Planations (SHAP) values
for the ten most important features in the dataset (sorted top to bottom).
Each data point is a prediction of electrode deactivation from the held-
out cross-validation fold (test set). SHAP values indicate each feature’s
contribution to the model’s decision (positive: pushing the model towards
predicting deactivation; negative: pushing the model away from predicting
deactivation). Colors indicate feature values. Results are shown for three
different feature splits of the data (see Table II) including routinely collected
measures, data from system fitting, and data from follow-up examinations.

795

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 20,2022 at 00:58:34 UTC from IEEE Xplore.  Restrictions apply. 



IV. DISCUSSION

We found that an XAI model could predict electrode deac-
tivation from routine clinical measures with 60.8% accuracy.
Performance increased to 75.3% when system fitting data
was available, and to 84% when thresholds from follow-
up examinations were available. On the one hand, these
findings highlight the importance of periodical threshold
measurements to continuously monitor device performance.
On the other hand, in the absence of such measurements, our
work demonstrates that routinely collected clinical measures
and a single session of system fitting might be sufficient to
inform an XAI-based electrode deactivation strategy.

Unfortunately, we did not have access to OCT and fundus
images, which would have allowed us to infer anatomical
parameters such as electrode-retina distance and retinal thick-
ness. However, even if available these images are often of
limited use [3]: most retinal implant recipients present with
nystagmus, and electrodes cast shadows on the OCT b-scan.
This complicates the readout of parameters such as retinal
thickness and electrode-retina distance.

Consistent with previous studies [3], [4], we found that
electrode impedance is an important predictor of perceptual
thresholds, and thus electrode deactivation. The model fur-
ther identified subject age and time since blindness onset
as important predictors of future electrode deactivations. As
advanced cases of retinitis pigmentosa (RP) are associated
with worsening visual outcomes, it is perhaps not surprising
that time since blindness onset could serve as a proxy for
disease progression. These results suggest that parameters
such as age and time since blindness onset may be important
for predicting visual outcomes with patient-specific compu-
tational models of prosthetic vision [16], [17]. However, as
our study is limited to Argus II data, future work should
focus on replicating these results based on data from other
(and preferably: multiple) retinal implants.

To the best of our knowledge, this is the first systematic
study of electrode deactivation for the field of retinal prosthe-
ses. An accurate predictive model of electrode deactivation
that relies on routine clinical measures has the potential to
benefit both the retinal implant and wider neuroprosthetics
communities. In the near future, such data-driven approaches
could complement expert knowledge–driven interventions
[18], making increasingly few assumptions about the under-
lying data and instead automatically inferring and exploiting
relationships among the measured features.
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