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ScienceDirect
Discoveries in modern human neuroscience are increasingly

driven by quantitative understanding of complex data. Data-

intensive approaches to modeling have promise to dramatically

advance our understanding of the brain and critically enable

neuroengineering capabilities. In this review, we provide an

accessible primer to modern modeling approaches and

highlight recent data-driven discoveries in the domains of

neuroimaging, single-neuron and neuronal population

responses, and device neuroengineering. Further, we suggest

that meaningful progress requires the community to tackle

open challenges in the realms of model interpretability and

generalizability, training pipelines of data-fluent human

neuroscientists, and integrated consideration of data ethics.
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Introduction
With advances in recording hardware, computing infra-

structure, and data storage, human neuroscience has

access to a deluge of data from a variety of measurement

modalities, including electrophysiology, functional imag-

ing, and behavioral monitoring. These data are likely to

escalate in quantity and quality in the foreseeable future,

presenting both a tremendous challenge and unprece-

dented opportunity for insights into the functions and

dysfunctions of the human brain. Further, development

of data-driven models has the potential to transform

neuroengineering applications, including brain-computer

interfaces (BCIs) and neuroprostheses to rehabilitate,

assist, and augment the human nervous system.
www.sciencedirect.com 
Modeling the human brain is particularly challenging in

large part because the data have non-stationary and multi-

scale dynamics, exhibit spatial heterogeneity, and are

typified by substantial individual variability. Unlike prog-

ress toward understanding the neuroscience of non-

human model organisms, many observations of human

neural computations may be relatively limited in scope,

constrained by opportunistic data from clinical sources,

and lack true reproducible controls. Many successes in

the history of neuroscience have hinged on the availabil-

ity of accurate biophysical models; however, we are

increasingly interested in characterizing systems for

which no physical model can be easily written.

Fortunately, innovations in computational approaches are

making tractable the analysis, modeling, and prediction of

large, multimodal, and unstructured data. The most rele-

vant tools have come from methodlogical domains includ-

ing data science, statistics, machine learning, dynamical

systems, and control theory. Moreover, models can now

leverage multiple modalities of measurements, integrat-

ing different resolutions and types of data. Large, high-

quality datasets are also becoming openly available.

Although critical infrastructure is still being developed,

there is mounting interest and pressure from the commu-

nity for data sharing and building open access data repos-

itories (e.g. [1,2]). In the framework of Jim Gray [3],

human neuroscience has entered the fourth paradigm of

data-intensive science, where discoveries are defined by

our ability to manage, explore, and disseminate data.

In this review, we define data-driven modeling in the

realm of human neuroscience, give an overview of com-

mon tools of the trade, and highlight key advances in the

literature. These tools have the potential to uncover

critical insights in human neural function, as well as

enable novel technologies beyond what is achievable

with more traditional methods. Importantly, we discuss

caveats and limitations of data-driven approaches, espe-

cially the dangerous blind use of black-box methods and

the ethical ramifications of models that impact our sense

of self.

A primer on data-driven models
What is a model? We can think of a model as a representa-

tion of reality; in the context of understanding human

neuroscience and advancing neuroengineering applica-

tions, the most useful models are quantitatively rigorous

and intimately tied to measurement data. In other words,

models are representations of data that can be useful for
Current Opinion in Neurobiology 2019, 58:21–29
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Box 1 Data-driven modeling terminology

machine learning: learning from data with computational algorithms.

The blanket term can be used to refer to many types of modeling

methods typically developed in statistics, computer science, and

applied mathematics.input data: the data supplied by the user for

fitting a model, including the features x and the targets y, if any.

outputs: what a model produces. The nature of the desired outputs

determines the type of model most appropriate for a specific task

(see Figure 2).continuous outputsare numerical in nature, either

ordinal or real valued. Examples include spiking rates, magnetoen-

cephalography (MEG) activation, and intensity of auditory stimulus.

categorical outputsare discrete in nature; members of different

categories have no intrinsic similarity relationship. Examples include

experimental block and neuron cell type.supervised models: a type

of model where the outputs are predictions based on the input

features x fit to the input targets y.targets y: in supervised models,

these are ground-truth labels for each sample of the data. The model

parameters are fit so that the outputs reproduce y as closely as

possible, as defined by an error metric.unsupervised models: a type

of model where the outputs are transformations of the input data that

reveal some otherwise hidden structure in the features.discriminative

modelstry to find a direct mapping function f from features x to

targets y (i.e., y = f(x)). In the probabilistic setting, this approaches

involves modeling the posterior probability p(y|x) directly.generative

modelstry to predict y from x by estimating the joint distribution p(x,
y), so that the prediction p(y|x) can be indirectly obtained by applying

Bayes’ rule. Consequently, generative models can in principle pro-

duce synthetic, never observed examples by sampling from the

estimated joint distribution.
recognizing patterns, making predictions, or controlling

systems.

The choice of models best fit for a particular problem

depends on a variety of factors, including how much data

have been recorded and how much expert knowledge is

available. This model continuum is shown schematically

in Figure 1, and brief definitions of the key terminology

are in Box 1. At one end of the continuum, equations are

written based on existing theory of biophysics or cogni-

tion; these equations codify known relationships and

dependencies between variables and features. Example

models of this type include the Hodgkin-Huxley model

of a spiking neuron [4] and the drift-diffusion models of

short-term memory and decision-making [5].

Data-driven models make increasingly few assumptions

about the nature of the underlying system to be repre-

sented. Instead of relying on expert knowledge, relation-

ships among measured features in the data are derived

from the data. Common examples include generalized

linear models, Bayesian generative models, and latent

space (i.e. latent variable) models. Depending on the

magnitude and nature of the assumptions made, this class

of models typically require a moderate amount of training

data. An increasingly popular class of highly flexible

models are artificial neural networks. Although these
Figure 1

A schematic of the continuum between models relying on expert knowledge and more flexible, data-driven models, showing roughly the quantity

of training data required for each type. Fitting expert equations requires relatively little data and leads to more simply interpretable models;

however, data-driven models are more expressive and able to uncover unexpected patterns in the data. Although we are showing the models to

occupy distinct locations on these axes, we would like to emphasize the continuous nature of these models; for instance, not all latent space

models are more data-driven than all generative models. We elaborate on each of these types of models in Section ‘Highlights of data-driven

discoveries’. We also color each type of model by whether they are supervised or unsupervised. A model can be conceptualized as a machine

that takes input data and produces output data. Box 1 defines commonly used terms in data-driven modeling.
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models have roots in connectivism, the recent success of

deep neural networks (i.e. deep learning) to solve previ-

ously intractable problems has relied on the sheer size and

complexity of both the networks and the training data [6].

We can also characterize types of models by whether they

are supervised or unsupervised methods, which are models

fit with or without ground truth (target) labels, respec-

tively (Figure 1, right). In supervised models, a proper

choice of input data—the features and targets—is essen-

tial to the success and usefulness of the resultant model.

Further, the same measurements can be used either as

features or as targets for different purposes. For instance,

a decoding model takes neural activity as input features to

decode the target behaviors; alternatively, an encoding

model takes stimulus as input features to reproduce the

target neural activity. In the absence of targets, unsuper-

vised models transform the input data by discovering

latent relationships or coherent dimensions in the fea-

tures. Figure 2 outlines the decision process for choosing

among types of data-driven models and gives a few simple

examples of each type.

Highlights of data-driven discoveries
In this section, we review recent examples of data-driven

models, roughly in order of increasing model complexity.

Because biophysical and cognitive models assume sub-

stantial expert knowledge and leave relatively few free

parameters, fitting them to physiological, imaging,
Figure 2

The decision process for choosing categories of data-driven models suitabl

truth targets are used to fit the model, and whether the type of desired mod

are consistent with what are used in Figure 1. We give two simple methods

frameworks (e.g., neural networks and latent space models) can fall under m

www.sciencedirect.com 
psychophysical, or symptomatic measurements requires

relatively little data. Therefore we focus this review on

the more data-driven parts of the modeling continuum.

For each type of model, we highlight recent results from

three different application domains: neuroimaging, sin-

gle-neuron or neuronal population responses, and devices

neuroengineering. In addition, we also focus on recent

models that incorporate heterogeneous, multimodal data

streams.

Barely nonlinear models

The field of neuroscience has a long tradition of attempt-

ing to capture underlying structure in data with simple,

relatively rigid models that contain a fixed number of

parameters. These simple models often start with an

assumption of linearity; in other words, the inputs and

outputs are related by a linear function, such that dou-

bling the inputs would double the outputs. For instance,

the response characteristics of neurons in early sensory

pathways are traditionally modeled by a linear-nonlinear-

Poisson (LNP) cascade model [7,8]. Although LNP mod-

els include a nonlinearity, their functional behavior is

remarkably linear over their dynamic range. For the

purpose of this review, we will therefore refer to these

models as barely nonlinear models (BNMs).

Data-driven approaches are common in studies of human

neuroanatomy and resting state networks, but they are
e for a particular task. Choices are based on whether some ground

el outputs are categorical or continuously valued (see Box 1). Colors

 that exemplify each type of model. Further, some modeling

ultiple types, depending on how they are structured and trained.

Current Opinion in Neurobiology 2019, 58:21–29
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only beginning to be used in functional magnetic reso-

nance imaging (fMRI). Functional imaging studies often

assume that blood-oxygen-level-dependent imaging

(BOLD) responses are due to a linear combination of

causes [9,10]—known as the general linear model for fMRI,

and not to be confused with the generalized linear mod-

els. More recent work has focused on extensions of the

linear regression framework; for example, stimuli are first

encoded into meaningful, potentially nonlinear features,

and each voxel’s responses are then regressed to these

features [11��].

Another influential BNM in fMRI research is the popu-

lation receptive field (pRF) method [12], which assumes

that the response of each voxel has a specific parametric

form (e.g., defined by stimulus orientation, eccentricity,

or size). This allows pRF profiles to be measured directly

by back-projecting preprocessed fMRI time series to the

stimulus (e.g., [13,14]). In clinical neuroscience, BNM

have recently been used to reveal functional reorganiza-

tion of pRF in patients with schizophrenia [15] and

autism spectrum disorders [16,17]. One advantage of

pRF is that they provide a clear test of how well a model

of voxel tuning preferences can predict BOLD responses;

however, more recent work has shown that pRF profiles

in some areas might not be easily parameterized [18�,19],
motivating model-free approaches [18�]. In addition, only

a few recent models have integrated heterogeneous data

streams [20].

In device neuroengineering, BNM loosely inspired by

information processing in the retina were used to fit a

wide range of heterogeneous psychophysical data to

predict visual outcomes in retinal prosthesis patients

[21,22]. A complementary approach simulated neuronal

activity using a biophysically detailed model of the retina,

and then inferred the visual information available to the

patient via optimal linear reconstruction [23]. These

models have the potential to advance the state-of-the

art in engineered devices to restore sight by unifying

single neuron responses with perception.

Despite their wide use, the ability of BNM to capture

cognitive and neurobiological processes is limited.

Although BNM models are typically interpretable and

require little data to fit their parameters, they are likely to

underfit increasing quantities of rich neuroscience data

[24].

Generative models

Generative models are often used to jointly estimate a

brain-behavior relationship by using a hidden represen-

tation useful for explaining the target behavior. Common

generative models include Bayesian networks and hidden

Markov models (HMMs). Unlike deterministic models,

generative models obtain a prediction by applying Bayes’

rule to the joint distribution of the prediction problem
Current Opinion in Neurobiology 2019, 58:21–29 
(see Box 1). In this way, Bayesian models are calibrated on

already existing, prior expert knowledge.

One approach to studying “effective” connectivity in

brain imaging is via dynamic causal modeling (DCM)

[25,26], a method to quantify the functional influence a

particular brain region exerts on other brain regions.

DCM affords an internal representation of how external

inputs (i.e., known changes in experimental manipula-

tion) lead to unobserved states of neuronal population

responses, which in turn are assumed to generate the

observed BOLD responses. DCM has been widely used

to model sensory perception [27,28], analyze resting state

[29�], and infer connectivity changes in various brain

disorders [30,26]. In addition, a recent implementation

of DCM in the frequency domain has made it possible to

efficiently operate on large-scale brain networks [29�].

By exposing the low-dimensional structure embedded

within high-dimensional brain measurements, generative

models can provide interpretable and detailed insights

into behavior and its disturbances. For example, HMM

models of high-dimensional time-series data can infer the

spatiotemporal topography of networks in response to the

environment [31,32]. Another study used HMM to detect

stable and abstract event boundaries in higher-order brain

areas without relying on human annotations [33]. By

integrating some BNM into a Bayesian framework, a

HMM combined with regression was used to identify

semantic maps for natural speech [34].

Beyond classification and regression, an important

strength of generative models is that they are able to

test hypotheses about how the observed data can be

generated [35]. Many generative models assume some

hidden structure that underlie the data, making them

more reliant on expert knowledge than the latent space

models discussed in the next subsection.

Latent space models

Latent space models (LSMs) have played a key role in

furthering our understanding of high-dimensional neural

population activity (for a recent review, see ref. [36]).

LSM assume that n measurable variables, such as the

spiking activity of a population of n neurons, are actually

due to r unobserved, independently acting variables,

called latent variables or hidden causes, where

r � n. These latent variables define an r-dimensional

space that represents the shared activity patterns promi-

nent in the population response. Popular LSM include

factor analysis, principal component analysis (PCA), and

independent component analysis (ICA), which are unsu-

pervised techniques, although supervised LSM are also

commonly used.

LSM make it possible to integrate data collected using

different recording techniques, such as fMRI and
www.sciencedirect.com
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magnetoencephalography (MEG) [37], or the combina-

tion of brain imaging and behavioral data [38,39]. In

clinical neuroscience, LSM are increasingly being used

to predict patient outcomes [37,40]. Often, it is necessary

to develop new methods to cope with the heterogeneity

of these data sources, which has led to the development of

a variety of probabilistic [41��,42�], multi-scale [43], and

dimensionality reduction techniques [44,45].

In functional imaging, LSM have been used to probe

brain states underlying vision [46], memory [47], resting

states [48], mood [49], and various cognitive tasks. For

example, human cognitive processes were shown to be

influenced not only by external task demands, but also by

latent, mental processes that change over time [50��,42�].

In device neuroengineering, LSM are useful to manage

the dimensionality and complexity of the measured data.

Recent examples include predicting cochlear implant

outcomes from neuroanatomical data [51], making BCI

control robust to future neural variability [52], and pre-

dicting human operator error in a BCI [53].

Moreover, control-theoretic approaches have impact

beyond engineering and have also been useful to answer

basic neuroscience questions about learning and adapta-

tion. A key insight was a finding that different computa-

tions are carried out in different subspaces of neural

population activity (termed the intrinsic manifold)
[54,55]. This notion of a low-dimensional subspace was

interrogated with a BCI to discover constraints on learn-

ing, explaining why some tasks are more easily or quickly

learned than others [56,57��].

LSM are powerful tools in the analysis and modeling of

high-dimensional data, especially those that involve sev-

eral levels of abstraction or types of data. However, LSM

often involve some hyper-parameters (e.g., the number of

components or intrinsic dimensionality of the system)

that must be specified by the investigator. In order to

discover increasingly complex relationships among the

available data, more flexible non-parametric models may

be needed.

Deep learning models

Deep learning refers to a class of very large, multi-layered

neural network models [6]. In contrast to expert equations

and simple parametric models, deep learning models

typically make weak assumptions about the data. This

flexibility allows them to both automatically identify

meaningful features and adapt their expressive capacity

to the underlying complexity of the data. Modern DNN

excel at hierarchical nonlinear classification and regres-

sion; in theory, they can represent any underlying distri-

bution. The practical tradeoff is that the amount of

training data required may be astronomical.
www.sciencedirect.com 
Indeed, the tremendous success of recent DNN in dif-

ferent application domains is partly due to training sam-

ple sizes of n> 1,000,000 [6]. In contrast, today’s reference

datasets in brain imaging reach between �1,000 partici-

pants in the Human Connectome Project to �10,000

participants in the UK Biobank Imaging Study. Dataset

size alone has made it difficult to deploy state-of-the-art

DNN in functional imaging studies.

Nevertheless, several studies have been able to circum-

vent the vast amounts of imaging data needed to train

modern DNN architectures. These strategies include

using a DNN with pre-trained weights [58] and augment-

ing existing datasets with synthetic data points [59,60].

However, by far the most popular approach is to train

DNN on the input stimulus distribution instead of the

recorded brain responses [61]. Other studies went a step

further and argued for a close correspondence between

simulated activity in individual layers of a convolutional

neural network (CNN) and neuronal activity across the

hierarchy of the visual system, either measured by fMRI

[62�,63��] or by MEG [64,65].

Deep learning has also been used to solve neuroengineer-

ing tasks. For example, CNN have been able to increase

performance in decoding electroencephalography (EEG)

for movement [66,67], and recurrent DNN have made

progress toward reconstruction of speech from intracranial

EEG [68��,69,70,71]. Using both video and intracranial

recordings, a multi-modal CNN combined video with

intracranial neural recordings to decode and predict

human movement in naturalistic contexts using thou-

sands of examples of movement over hundreds of hours

[72��]. In cochlear implant research, DNN are widely

used for noise reduction to improve speech intelligibility

[73] and music perception [74].

Deep learning is well suited for analyzing complex,

multimodal data, including processing functional imaging

data and controlling neuroprosthetic devices. Impor-

tantly, although the quantity of training data required

is large and model fitting can be very processor intensive,

the execution of a trained model on streaming data is

relatively computationally tractable (e.g. [75]). However,

due to the vast amounts of data required to train current

DNN, their adoption in the domains of human neurosci-

ence and neuroengineering is still emerging.

Open challenges and outlook
Human neuroscience faces a paradigm shift precipitated

by rapid advances in the ways we acquire, manage, share,

and understand data. Even so, for data-intensive discov-

eries to have their full impact, we must tackle a variety of

key challenges in technology, training, and ethics.

Interpretability and generalizability. A pressing challenge

is developing data-driven models that not only perform
Current Opinion in Neurobiology 2019, 58:21–29
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well but also give some insight into how they work. Simple

parametric models are typically more interpretable, easier

to implement, and faster to estimate, making them the

best choice in data-scarce applications. However, they

can often underfit the available measurements in data-

rich scenarios. It has been argued that the reliance on

parametric analysis may keep neuroscience from discov-

ering novel neurobiological insights that surface only with

more complex data representations [1]. Nevertheless, the

“black box” nature of many data-driven methods, espe-

cially ones with many millions of parameters like modern

DNN, impedes their adoption by scientists. In addition,

since human neuroscience is intrinsically closely tied to

translation, it is imperative that computational models

yield insights that are are explainable to, and trusted by,

clinicians, end-users, and industry. We suggest that the

development of interpretable machine learning methods,

including those that partially “bake in” known theory and

expert knowledge, will be a fruitful focus of future

research.

Training. The next generation of human neuroscientists

will have access to genomic, anatomical, neural, and

behavioral data of unimaginable richness and complexity.

To take full advantage of these data, we need researchers

who are fluent in the language of machine learning and

adept in the practice of data science [76,2]. A trans-

disciplinary approach to academic training will be integral

to producing, in Ed Lazowska’s words, “p-shaped” indi-

viduals [77], who have deep expertise in both human

neuroscience and in data science.

Ethics. The information age is awash in data, and the

proliferation of machine learning tools applied to any and

all data has produced some spectacular answers to ques-

tions that ought never have been asked. The academic

literature and popular scientific news are rife with exam-

ples of data-driven models that amount to digital phre-

nology. In data-driven science as in all of science, asking

the right questions can be the most crucial—and often the

most difficult—part of a study. In conceptualizing

machine learning models as schematized in Figure 1,

we suggest that posing questions grounded in known

hypotheses and theories is critical for making meaningful

insights, in large part by using suitable input data, choos-

ing models that make defendable assumptions, and ask-

ing for reasonable output types. Further, the technical

community benefits enormously from continued and

integrated engagement with the bioethics community

[78]. We must be cognizant of the growing promise for

great societal good as well as for deep invasions into our

inner mental lives.

Will recording larger and higher resolution data produce
fundamentally new insights in human neuroscience and advance
neuroengineering? Here we have highlighted some recent

work in the field that have made important strides in the
Current Opinion in Neurobiology 2019, 58:21–29 
right directions, but the answer to the big question is far

from clear. Even so, it is plain that data-driven techniques

will become increasingly prevalent in the near and inter-

mediate future. We are optimistic that the continued

development of modern computational techniques will

shed light on mechanisms of human neural function in

new and unexpected ways.
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