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Abstract— Road and lane detection play an important role
in autonomous driving and commercial driver-assistance sys-
tems. Vision-based road detection is an essential step towards
autonomous driving, yet a challenging task due to illumination
and complexity of the visual scenery. Urban scenes may present
additional challenges such as intersections, multi-lane scenarios,
or clutter due to heavy traffic. This paper presents an integra-
tive approach to ego-lane detection that aims to be as simple
as possible to enable real-time computation while being able
to adapt to a variety of urban and rural traffic scenarios. The
approach at hand combines and extends a road segmentation
method in an illumination-invariant color image, lane markings
detection using a ridge operator, and road geometry estimation
using RANdom SAmple Consensus (RANSAC). Employing the
segmented road region as a prior for lane markings extraction
significantly improves the execution time and success rate of
the RANSAC algorithm, and makes the detection of weakly
pronounced ridge structures computationally tractable, thus en-
abling ego-lane detection even in the absence of lane markings.
Segmentation performance is shown to increase when moving
from a color-based to a histogram correlation-based model. The
power and robustness of this algorithm has been demonstrated
in a car simulation system as well as in the challenging KITTI
data base of real-world urban traffic scenarios.

I. INTRODUCTION

Road and lane position detection are integral compo-
nents in autonomous driving and intelligent transportation
systems. A large body of research has focused on vision-
based road detection methods [1]–[6], and some of these
methods are already successfully used in commercial lane
estimation systems [4]. Most vision-based road detection
algorithms rely on low-level image features (such as color
or texture) in combination with a post-processing step for
outlier removal (using tracking, filtering, data fusion, or
computational models of both road and vehicle) [1]. How-
ever, additional constraints usually come at an additional
computational cost, and can restrict the algorithm to highly
structured roads and uncluttered scenes (such as freeways
or interurban traffic scenarios). In urban traffic scenarios,
however, a road detection algorithm might be challenged by
the presence of substantial clutter due to heavy traffic, worn-
out lane markings, intersections, slip lanes, or others; and
abrupt changes in illumination strongly impact the quality of
visual sensing. Finding practical solutions to such real-world
scenarios is currently a major research topic in autonomous
and highly automated driving.
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Fig. 1. Autonomous vehicle tackling an urban traffic scenario.

The work at hand proposes a fast and robust ego-lane
detection algorithm that aims to be as simple as possible
to enable real-time computation while being able to adapt
to a variety of driving scenarios. The algorithm combines
and extends three independent pieces of research as fol-
lows. Road segmentation is performed on a “shadow-free”
representation [6] of an RGB image using a histogram
correlation method, and serves as a contextual prior for the
detection of lane markings, which are extracted by means of
ridge or “creaseness” detection [5]. A computational model
of the ego-lane geometry is then rapidly constructed by
fitting candidate lane markings to the model parameters
using RANdom SAmple Consensus (RANSAC) [7]. Thus
the resulting algorithm is able to determine on a frame-by-
frame basis: (i) the road region, (ii) the ego-lane region and
markings, (iii) the relative position and orientation of the car
with respect to the ego-lane, and (iv) the local lane width.
The effectiveness and robustness of this algorithm is demon-
strated in a car simulation system (PreScan) and in the
challenging real-world KITTI Vision Benchmark Suite [8].
Road segmentation results from the here employed histogram
correlation method show a significant improvement in perfor-
mance when compared to a previously proposed color-based
approach [6]. Furthermore, representative sample frames
demonstrate the correct extraction of ego-lane information
(i) in multi-lane scenarios, (ii) for a variety of road curvature
values, (iii) in the presence of cars on the road, (iv) in the
presence of strong shadows, (v) at intersections, and (vi) in
the absence of explicit lane markings. Thus the model at
hand signifies the first step towards constructing a powerful
but efficient vision-based algorithm capable of aiding an
autonomous vehicle in navigating complex urban scenes.

II. IMPLEMENTATION

The process flow of the proposed algorithm is shown in
Fig. 2. The following subsections will explain the model in
detail.
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Fig. 2. Process flow of the model.

A. Camera Setup

The camera setup is shown in Fig. 3. For the purpose
of this study, it is assumed that a stationary, forward-facing
color camera is located at the center of the windshield, a
horizontal distance of dL meters from the left lane border
(blue) at height H above the ground, and a distance dR from
the right lane border (green), such that total lane width L =
dL + dR. The camera coordinate system sustains an angle
θ with the road tangent line (yaw angle), and an angle φ
with the road plane (pitch angle). Whereas L, dL, dR, θ, and
φ may vary over time, H and the location of the horizon
can be assumed to remain constant. Thus, it is possible to
project the horizon line into each image frame and consider
only pixel rows below this line for further processing.

B. Road Segmentation

In order to remove shadows, the RGB image is converted
to an illuminant-invariant or “log-chromaticity” space [6], to
perform a texture-based road segmentation. The illuminant-
invariant transformation is illustrated in Fig. 4. For a given
RGB image with standard color channels R, G, and B the
log-chromaticity space has two axes, r = log(R/G) and
b = log(B/G), using the G channel for normalization. In this
space, a set of color surfaces of a given chromaticity value
imaged under different lighting conditions is projected onto
a straight line (labeled “illumination-dependent” in Fig. 4).
Sets of color surfaces with different chromaticity values form
parallel straight lines, whose offset corresponds to chro-
matic difference (“chromaticity-dependent”). Furthermore,
these lines define an orthogonal gray-level axis `α, where
a surface under different illuminations is represented by the
same point. Movements along `α imply changing the surface
chromaticity, independently of illumination. An example of
such a transformation is shown in Fig. 4.
Computation of this image requires the knowledge of the
angle α, which is an intrinsic parameter of the camera sensor,
and can be estimated using entropy-minimization [6].
In order to classify small image patches as either road surface
or background, it is proposed to extend the color-based
classifier introduced by Alvarez and Lopez [6] to a classifier
based on histogram correlation. Thus, instead of assigning
each pixel a probability of belonging to the road based on
its illuminant-invariant color value, it is proposed to compare

Fig. 3. Camera setup for image acquisition (adapted from [5]).

the normalized histogram of a small image patch with that
of a road model. A road model M was built by computing
the normalized histogram hM of illuminant-invariant color
values in a neighborhood of a set of road pixels. For this, a set
of Ns seeds was placed following an equidistant distribution
along two rows Rs at the bottom part of each image. The
normalized histogram was then computed within a squared
area of Ks ×Ks pixels surrounding each seed. Finally, the
i-th image patch consisting of Ks×Ks pixels was classified
as “road” if its histogram hi strongly correlated with hM;
that is, if corr(hi, hM) ≥ λ.
Following the implementation of Alvarez and Lopez, bin
width was chosen according to Scott’s rule, and a post-
processing step was performed based on mathematical mor-
phology operations (a closing with a 5px × 3px structuring
element followed by a flood-fill operation) [6]. However, the
here described histogram correlation approach has the clear
advantage of being capable to differentiate even between
image patches of similar chromaticity given that hi and hM
are only weakly correlated. This is advantageous especially
in urban environments, where it is likely to find a multitude
of grayish structures (similar color) but with distinct textures.
An example is shown in Fig. 5, where the approach by
Alvarez and Lopez (top) is not able to differentiate between
road, sidewalk and train tracks, but the approach at hand
(bottom) is. In order to ensure that Fig. 5 shows the best
possible segmentation result, an exhaustive search for pa-
rameters Ks and λ was performed, and the result compared
to the manually segmented road region. The top image used
Ks = 11 and λ = 0.01, whereas the bottom image used
Ks = 15 and λ = 0.84 (note the different definitions of λ).
The segmented road region was then used as a search
window for the detection of lane markings, reasoning that
lane markings must be located on the road.

C. Lane Markings Detection

The lane markings detection algorithm is based on a low-
level image feature called a “ridge”, which is a measure of
“creaseness” [5], [9]. Ridges of a gray-level image are the
center lines of bright, elongated structures. Let I(x) be a
grayscale image with spatial coordinates x = (x1, x2). If
the image is considered a landscape by plotting I(x) against
x, then these center lines correspond to the landscape ridges.
It has been shown that this analysis performs better than, for
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Fig. 4. Illuminant-invariant transformation (α = 0.85).

Fig. 5. Segmentation example. Top: color-based, Alvarez and Lopez [6].
Bottom: histogram correlation-based, this paper.

example, lane markings detection based on steerable filters or
edge detection, because of its invariance to image translation,
rotation, and monotonic gray-level transforms [5], [9]. An
enhanced creaseness measure κ̃ can be obtained as follows.
(1) Compute the structure tensor field S based on the
gradient vector field w. For the computation of S a Gaussian
neighborhood G(x;σI) of size σI (“integration scale”) is
used. In the 2D case this gives

S(x;σI ;σD) =

(
s11 s12

s21 s22

)
, (1)

sij(x;σI ;σD) = G(x;σI) ∗
dI

dxi
(x;σD)

dI

dxj
(x;σD)),

where ∗ denotes convolution and σD (“differentation scale”)
denotes the standard deviation of the Gaussian kernel in-
volved in the differentation process needed to compute w in
a well-posed manner. The differentation scale is tuned to the
size of the objects whose orientation has to be determined,
whereas the integration scale is tuned to the size of the
neighborhood in which an orientation is dominant.
(2) Perform the eigensystem analysis of S analytically. The
eigenvector which corresponds to the highest eigenvalue
w′(x;σI) of S(x;σI) yields the dominant gradient orien-
tation at x, where “dominant” means inside the Gaussian
neighborhood [9]. Note that the gradient of a function points
toward the direction of maximum change. In order to apply
the divergence operator in the next step, a proper direction

to the dominant gradient orientation w′ needs to be assigned.
To recover such direction, w′ is put in the same 2D-quadrant
as w. Thus the new vector field is w̃ = sign(w′tw)w′.
(3) Compute the new enhanced creaseness measure κ̃d =
−div(w̃). Positive values of κ̃d measure the similarity of
a neighborhood to a ridge structure. In fact, it has been
shown that these values lie in the range [0.0, 2.0], where 0
means not at all ridge, around 1.0 quite and 2.0 perfect local
maximum [9]. The algorithm only considers those pixels x
for which κ̃d(x) > 0.25, a value set experimentally but fixed
for all simulations.
Due to perspective, the imaged lane lines’ width decreases
with distance. In order not to miss them when computing
the image gradient, anisotropic Gaussian smoothing is per-
formed, where the variance σD of the Gaussian (along the
horizontal direction) increases with increasing row number.
(4) Compute a suitable confidence measure C to reduce
creaseness in the structures that are not essential for further
steps. Ridges should be enhanced if there is a single dom-
inant orientation within a neighborhood, which is indicated
by a large dissimilarity of the eigenvalues in the structure
tensor. Therefore, denoting the eigenvalues of S by λ1, λ2,
a logical choice consists of testing whether the sum of
quadratic differences

λ∆(x;σI) =

d∑
i=1

d∑
j=i+1

(λi(x;σI)− λj(x;σI))2 (2)

exceeds a pre-defined threshold c characteristic for λ∆ in the
structure to be enhanced. A suitable function is C(x;σI ; c) =
1 − exp(−(λ∆(x;σI))

2/2c2). Finally κ̃dC is used as a
measure of creaseness.

D. Road Geometry Estimation

Detected ridges are fed into the road geometry estimation
module as candidate lane markings, which are then fit to a
parametric road module using RANSAC.
Under the assumption of a flat road and constant curvature, a
lane line is projected onto the image plane as a hyperbola [5],
[10]. Furthermore, the curvature is either constant or varies
linearly with the arc length s, such that curvature C =
1/R = C0 + C1s. This is consistent with a road formed by
segments of constant curvature connected by clothoids [11].
The changes in curvature are assumed to be smooth, such that
the linear term of the curvature is negligible, i.e. C1 ≈ 0.
The road geometry can be expressed as a pair of hyperbolas,
modeling the left and right lane lines, that share the horizon
as horizontal asymptote and correspond to two parallel lines
L meters apart when back-projected to the road plane (see
Fig. 3). The corresponding linear system AθM = b that
relates two points (uL, vL) and (uR, vR) on the left resp. right
lane line to the road parameters can be written as

[
1 0 −v′L 1/v′L
1 v′R −v′R 1/v′R

]
a1

a2

a3

a4

 =

[
uL

uR

]
, (3)
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where v′L = vL/Ev + tanφ, v′R = vR/Ev + tanφ, and
Eu resp. Ev is the focal length in pixels/meter along the
horizontal resp. vertical camera axis [5], [10]. The model
θM = [a1, . . . , a4]

t can be translated to more meaningful
entities

θ =
cosφ

Eu
a1,

dL =
H

Eu cosφ
a3,

L =
H

Eu cosφ
a2,

C0 =
4 cos3 φ

EuH
a4,

(4)

where θ is the yaw angle, L is the road width, dL is the
camera’s horizontal distance from the left lane line, and C0

is the road curvature (compare Fig. 3). Parameters Eu, Ev ,
H , and φ can be estimated through a camera calibration
process [12].
Since the camera is located at the center of the windshield
(see Fig. 3) and forward-facing, it is straight-forward to
estimate the u-coordinate of the vanishing point uvanish, when
the vehicle is centered in a straight line. The assumption that
the lane lines must be located on either side of uvanish allows
to split the candidate lane markings into two sets. However, if
the ridge point is close to the horizon, this simple assumption
does not hold. Since the point could belong to either the left
or the right lane line, a third set is needed.
In each RANSAC iteration, four points from the three sets
of candidate lane markings are picked randomly (not all
from the same set), which is the minimum number required
to solve Eq. 3. Based on these four points, a road model
θ̃M is estimated. If the model yields a reasonable value
L ∈ [Lmin, Lmax] for the lane width, the model support is
computed by taking into consideration all candidate lane
markings. Otherwise four new points are picked from the
sets.
In order to determine the set of inliers for a hyperbola,
a metric or error function is needed. Other studies have
employed the geometric distance of a point to a conic or
the Sampson’s distance [5] (although the latter has been
criticized for being conceptually and computationally inac-
curate [13]). The work at hand proposes a computationally
much simpler yet effective step. First, the absolute error
between a candidate lane markings point and the current
model estimate θ̃M is computed

εL,i = |(ã1 − v′L,iã3 + ã4/v
′
L,i)− uL,i|

εR,j = |(ã1 + v′R,iã2 − v′R,j ã3 + ã4/v
′
R,j)− uR,j |,

(5)

where (uL,i, vL,i) resp. (uR,j , vR,j) is the i-th resp. j-th
candidate lane marking point for the left resp. right lane
line. If the error εL resp. εR for left resp. right lane candidate
is smaller than some threshold εmax, the candidate point is
considered an inlier and put in the consensus set. εmax was
set to 5.0.
A score z for the two hyperbolas is then computed by
considering all inliers i in the consensus set

z =
∑
i

1

1 + εL,i
+
∑
j

1

1 + εR,j
. (6)

The contribution of an inlier in the total hyperbola score is
inversely related to the inlier’s approximation error εl,i. The
overall result is that hyperbolas with many good inliers have
the greatest score. Combining the scores of both left and right
hyperbolas has the advantage that a good fit of one hyperbola
can compensate a poor fit of the other. If both hyperbolas
are fit poorly, then the total score z will be relatively low. If
z is below some threshold, it is discarded.
After a number (experiments show 200 to be sufficient) of
RANSAC iterations, the pair of hyperbolas with the greatest
score is selected as the lane lines.

TABLE I
ROAD SEGMENTATION RESULTS

corrBhattacharyya corrsimple color-based [6]
F̂ 0.9333± 0.0023 0.9236± 0.0033 0.8709± 0.0210
σ̂F̂ 0.0669± 0.0163 0.0697± 0.0125 0.1745± 0.0353

III. EVALUATION

A. Road Segmentation

Table I reports the effectiveness of the here proposed
histogram correlation-based road segmentation algorithm
(using Bhattacharyya distance resp. simple correlation)
in comparison with a segmentation method based on
illuminant-invariant color [6] (re-implemented for the
purpose of performance comparison). Results were obtained
by following a cross-validation procedure to apply the
different segmentation algorithms to the “Rainy Day”
sequence by Alvarez and Lopez [6]. This image sequence
was taken during a rainy day, just after the rain stopped
so that the road was wet, and can be downloaded from
http://www.cvc.uab.es/adas/databases.
Quantitative evaluations are provided by three pixelwise
measures: (i) precision P = (

∑
GIr)/

∑
Ir, (ii)

recall R = (
∑
GIr)/

∑
G, and (iii) effectiveness

F = (2PR)/(P +R), where G and Ir are the ground-truth
mask and the segmentation result of a given color image,
respectively. 35 images of the “Rainy Day” sequence were
selected randomly for learning the classification threshold
λ, whereas the rest of the images was used for testing.
This procedure was repeated 20 times, and average values
were computed for effectiveness F̂ = (1/20)

∑20
i=1 F̂i and

standard deviation σ̂F̂ = (1/20)
∑20
i=1 σF̂i

. To ensure fair
comparison, for all algorithms α = 44◦, Ks = 11, Ns = 9.
Correlation based on Bhattacharyya distance proved the
most effective and stable (lowest standard deviation),
whereas the color-based results were comparable to the ones
reported by Alvarez and Lopez [6].

B. Ego-Lane Detection

In order to assure the robustness and correctness of the
proposed algorithm, testing has been conducted using both
a PreScan simulation scenario (see Fig. 6) and the KITTI
Vision Benchmark Suite [8] (see Fig. 7). Left and right lane
lines are shown in blue and green, respectively (compare
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Fig. 6. Simulation results using PreScan.

Fig. 7. Real world results using the KITTI Vision Benchmark Suite.

Fig. 3), whereas ridge points in the final RANSAC consensus
set are plotted as small black circles. The segmented road
region is shown in a semi-transparent red.
A major problem in acquiring quantitative results for mean-
ingful parameters such as the actual road curvature, is
the lack of ground truth and precise knowledge of road
shape, camera position and the viewing direction at each
frame. Thus, qualitative results in the form of video frames
are presented, to show examples of challenging situations
involving multiple lanes, intersections, shadows, and poor
lighting conditions.

1) PreScan (a car simulation software tool): The pro-
posed algorithm was able to segment the road region with
high precision, even in the presence of shadows (Panels b–d,
h–l). Estimation of lane geometry was robust for a variety
of curvature magnitudes (Panels a–f), which is obvious
especially in Panel f, where only a few points of the right lane
are visible. When navigating an intersection (Panels g–j), the
algorithm is confronted with the problem of having multiple
lanes present, and when close enough to the intersection

(Panel i), the algorithm might in fact favor a turn over
going straight ahead. However, this is intended behavior, as
two equally likely road models are present in the frame. In
this scenario, another intelligence could easily inform the
road geometry module to look for a road patch of a certain
curvature (e.g., enforce small curvature magnitudes to go
straight ahead). After passing the intersection (Panel j), the
algorithm recovers quickly.
In the presence of multiple lanes (Panels k–l) the algorithm
constantly signals the right lane due to the fact that candidate
lane markings were partitioned into either possibly belonging
to the left or right lane line (see Section II-D). Thus the
algorithm will never confuse a neighboring lane with its own.

2) KITTI Vision Benchmark Suite (captured by autono-
mous vehicle “AnnieWAY” in the city of Karlsruhe): The
here presented algorithm demonstrates robust behavior in a
variety of urban environments (Panels a–c, g–l), in rural and
interurban environments (Panels d–f), even in the presence
of strong shadows (Panels a–c, e, f, and j) or objects on the
road (Panel a, c, e, and l).
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Panel i depicts a particularly difficult scenario, in which a
simple edge-detection based algorithms might confuse the
solid white line on the right-hand side for a lane boundary,
when it in fact belongs to a bicycle track. The here presented
algorithm avoids this pitfall by correctly detecting the curb
as candidate lane boundary and by discarding the outer white
line because the resulting lane width would be too large.
Panels j–l demonstrate that the here presented algorithm is
capable of ego-lane detection even in scenarios where no
explicit lane markings are present. One might assume that
in such an environment ridge detection would return an
empty result, and thus that RANSAC could not be performed.
However, by constraining the search area for lane markings
to the segmented road region, the search for overall weakly
pronounced but locally dominant ridge structures becomes
computationally tractable, which in turn enables the use of
curbs, surface subsidences, or even markings of a parking
spot as candidate lane boundaries for the correct estimation
of road geometry.

IV. DISCUSSION

A. Contribution

The work at hand presents an integrative vision-based
approach to aid an autonomous vehicle in navigating in
urban environments, by combining and extending a set of
independent pieces of research.
A previously published road segmentation algorithm was
extended to an approach based on histogram correlation,
which significantly improved segmentation performance.
This alteration proves viable especially in dense urban
environments, which show a predominance of grayish
textures such as sideways, train tracks, or walls. Thus the
algorithm is capable of separating regions of similar color
given that their histogram-based texture descriptors differ
significantly.
Employing the segmented road region as a prior for
lane markings extraction significantly improves the
execution time and success rate of the RANSAC algorithm.
Additionally, as the here presented results demonstrate, no
computationally intensive RANSAC error calculation (such
as computing the geometric distance to a conic sector) is
necessary to correctly infer road geometry in a variety of
driving scenarios. Moreover, limiting the search window
for candidate lane markings makes the detection of weakly
pronounced ridge structures computationally tractable, thus
enabling ego-lane detection even in the absence of explicit
lane markings.

B. Model Limitations and Future Work

Although the proposed segmentation algorithm works well
in a variety of urban environments, more work and testing
needs to be done in order to make the algorithm practical
for use in a real-world urban environment.
More attention needs to be directed to difficult scenarios
such as intersections and heavy traffic. RANSAC success rate
may be impeded if only a limited number of candidate lane

markings are present (such as in heavy traffic), if the present
lane bifurcates (such as in slip lanes), or when multiple
equally valid lane paths are available (such as at intersections
and roundabouts). Some of these conditions may require a
more sophisticated (e.g., probabilistic) framework [3]. In the
latter condition, external human or artificial input may inform
the vision-based algorithm of the driver’s intended trajectory.
The here proposed algorithm processes each frame indepen-
dently. However, in order to improve robustness, one might
consider the fact that road parameters do not change signif-
icantly from frame to frame, given a sufficiently high frame
rate. Especially RANSAC execution time might benefit from
prohibiting the estimated road model to change significantly
on a frame-by-frame basis. For this, a Kalman or particle
filter could be employed.
Future work could also be directed in the field of sensor
fusion, such as using laser scanners to detect weak surface
subsidences or structures that are difficult to detect using
computer vision algorithms.
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